Cargando…

PID Fuzzy Control Applied to an Electrosurgical Unit for Power Regulation

The electrosurgical unit (ESU) is the most common device in modern surgery for cutting and coagulation of tissues. It produces high-frequency alternating current to prevent the stimulation of muscles and nerves. The commercial ESUs are generally expensive and their output power is uncontrolled. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Ridha, Ali Mohammed, Mahdi, Ali Jafer, Abed, Jameel Kadhim, Fahad, Shah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851982/
https://www.ncbi.nlm.nih.gov/pubmed/33584906
http://dx.doi.org/10.2478/joeb-2020-0011
Descripción
Sumario:The electrosurgical unit (ESU) is the most common device in modern surgery for cutting and coagulation of tissues. It produces high-frequency alternating current to prevent the stimulation of muscles and nerves. The commercial ESUs are generally expensive and their output power is uncontrolled. The main objective of the proposed study is to propose an economic ESU with an additional feature of output power regulation using a fuzzy logic controller (FLC) based proportional integral derivative (PID) tuned controller. Unlike the previous studies, the proposed controller is designed in a fully closed-loop control fashion to regulate the output power of the ESU to a fixed value under the consideration of highly dynamic tissue impedance. The performance of the proposed method is tested in the MATLAB/SIMULINK environment. In order to validate the superiority of the proposed method, a comparative analysis with a simple (PID) controller based ESU is presented.