Cargando…
DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks
BACKGROUND: Due to the complexity of the biological systems, the prediction of the potential DNA binding sites for transcription factors remains a difficult problem in computational biology. Genomic DNA sequences and experimental results from parallel sequencing provide available information about t...
Autores principales: | Chen, Chen, Hou, Jie, Shi, Xiaowen, Yang, Hua, Birchler, James A., Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852092/ https://www.ncbi.nlm.nih.gov/pubmed/33522898 http://dx.doi.org/10.1186/s12859-020-03952-1 |
Ejemplares similares
-
RBPsuite: RNA-protein binding sites prediction suite based on deep learning
por: Pan, Xiaoyong, et al.
Publicado: (2020) -
"Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis
por: Arellano, Gustavo, et al.
Publicado: (2011) -
MHCSeqNet: a deep neural network model for universal MHC binding prediction
por: Phloyphisut, Poomarin, et al.
Publicado: (2019) -
Measuring similarities between transcription factor binding sites
por: Kielbasa, Szymon M, et al.
Publicado: (2005) -
DeepGRP: engineering a software tool for predicting genomic repetitive elements using Recurrent Neural Networks with attention
por: Hausmann, Fabian, et al.
Publicado: (2021)