Cargando…
Sparse self-attention aggregation networks for neural sequence slice interpolation
BACKGROUND: Microscopic imaging is a crucial technology for visualizing neural and tissue structures. Large-area defects inevitably occur during the imaging process of electron microscope (EM) serial slices, which lead to reduced registration and semantic segmentation, and affect the accuracy of 3D...
Autores principales: | Wang, Zejin, Liu, Jing, Chen, Xi, Li, Guoqing, Han, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852179/ https://www.ncbi.nlm.nih.gov/pubmed/33522940 http://dx.doi.org/10.1186/s13040-021-00236-z |
Ejemplares similares
-
An extremum-guided interpolation for sparsely sampled photoacoustic imaging
por: Wang, Haoyu, et al.
Publicado: (2023) -
Sparse-view tomography via displacement function interpolation
por: Zeng, Gengsheng L.
Publicado: (2019) -
Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences
por: Kim, Younghoon, et al.
Publicado: (2022) -
Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations
por: Arthurs, Christopher J., et al.
Publicado: (2021) -
Neural network interpolation of exchange-correlation functional
por: Ryabov, Alexander, et al.
Publicado: (2020)