Cargando…
Selecting single cell clustering parameter values using subsampling-based robustness metrics
BACKGROUND: Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely...
Autores principales: | Patterson-Cross, Ryan B., Levine, Ariel J., Menon, Vilas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852188/ https://www.ncbi.nlm.nih.gov/pubmed/33522897 http://dx.doi.org/10.1186/s12859-021-03957-4 |
Ejemplares similares
-
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
Clustering gene expression data with a penalized graph-based metric
por: Bayá, Ariel E, et al.
Publicado: (2011) -
Subsampling
por: Politis, Dimitris N, et al.
Publicado: (1999) -
Tree reconciliation combined with subsampling improves large scale inference of orthologous group hierarchies
por: Heller, Davide, et al.
Publicado: (2019) -
Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection
por: Urbanowicz, Ryan J, et al.
Publicado: (2012)