Cargando…

Nanoscale metal-organic frameworks for x-ray activated in situ cancer vaccination

Cancer vaccines have been actively pursued to bolster antitumor immunity. Here, we designed nanoscale metal-organic frameworks (nMOFs) as locally activable immunotherapeutics to release danger-associated molecular patterns (DAMPs) and tumor antigens and deliver pathogen-associated molecular patterns...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Kaiyuan, Lan, Guangxu, Guo, Nining, Culbert, August, Luo, Taokun, Wu, Tong, Weichselbaum, Ralph R., Lin, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852401/
https://www.ncbi.nlm.nih.gov/pubmed/33008911
http://dx.doi.org/10.1126/sciadv.abb5223
Descripción
Sumario:Cancer vaccines have been actively pursued to bolster antitumor immunity. Here, we designed nanoscale metal-organic frameworks (nMOFs) as locally activable immunotherapeutics to release danger-associated molecular patterns (DAMPs) and tumor antigens and deliver pathogen-associated molecular patterns (PAMPs) for in situ personalized cancer vaccination. When activated by x-rays, nMOFs effectively generate reactive oxygen species to release DAMPs and tumor antigens while delivering CpG oligodeoxynucleotides as PAMPs to facilitate the maturation of antigen-presenting cells. Together, DAMPs, tumor antigens, and PAMPs expand cytotoxic T cells in tumor-draining lymph nodes to reinvigorate the adaptive immune system for local tumor regression. When treated in combination with an immune checkpoint inhibitor, the local therapeutic effects of nMOF-based vaccines were extended to distant tumors via attenuating T cell exhaustion. Our work demonstrates the potential of nMOFs as x-ray–activable in situ cancer vaccines to awaken the host’s innate and adaptive immune systems for systemic antitumor immunity.