Cargando…
Body Composition Changes with Long-term Pegvisomant Therapy of Acromegaly
CONTEXT: In active acromegaly, the lipolytic and insulin antagonistic effects of growth hormone (GH) excess alter adipose tissue (AT) deposition, reduce body fat, and increase insulin resistance. This pattern reverses with surgical therapy. Pegvisomant treats acromegaly by blocking GH receptor (GHR)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853172/ https://www.ncbi.nlm.nih.gov/pubmed/33553983 http://dx.doi.org/10.1210/jendso/bvab004 |
Sumario: | CONTEXT: In active acromegaly, the lipolytic and insulin antagonistic effects of growth hormone (GH) excess alter adipose tissue (AT) deposition, reduce body fat, and increase insulin resistance. This pattern reverses with surgical therapy. Pegvisomant treats acromegaly by blocking GH receptor (GHR) signal transduction and lowering insulin-like growth factor 1 (IGF-1) levels. The long-term effects of GHR antagonist treatment of acromegaly on body composition have not been studied. METHODS: We prospectively studied 21 patients with active acromegaly who were starting pegvisomant. Body composition was examined by whole body magnetic resonance imaging, proton magnetic resonance spectroscopy of liver and muscle and dual-energy x-ray absorptiometry, and endocrine and metabolic markers were measured before and serially during 1.0 to 13.4 years of pegvisomant therapy. The data of patients with acromegaly were compared with predicted and to matched controls. RESULTS: Mass of visceral AT (VAT) increased to a peak of 187% (1.56-229%) (P < .001) and subcutaneous AT (SAT) to 109% (–17% to 57%) (P = .04) of baseline. These remained persistently and stably increased, but did not differ from predicted during long-term pegvisomant therapy. Intrahepatic lipid rose from 1.75% to 3.04 % (P = .04). Although lean tissue mass decreased significantly, skeletal muscle (SM) did not change. IGF-1 levels normalized, and homeostasis model assessment insulin resistance and HbA1C were lowered. CONCLUSION: Long-term pegvisomant therapy is accompanied by increases in VAT and SAT mass that do not differ from predicted, stable SM mass and improvements in glucose metabolism. Long-term pegvisomant therapy does not produce a GH deficiency-like pattern of body composition change. |
---|