Cargando…
Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics
OBJECTIVES: To study the effects of advancements in upper-limb prosthesis technology on the user through biomechanical analyses at the joint level to quantitatively examine movement differences of individuals using an advanced upper-limb device, the DEKA Arm, and a conventional device, a body-powere...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853360/ https://www.ncbi.nlm.nih.gov/pubmed/33543084 http://dx.doi.org/10.1016/j.arrct.2020.100057 |
_version_ | 1783645945149259776 |
---|---|
author | Bloomer, Conor Kontson, Kimberly L. |
author_facet | Bloomer, Conor Kontson, Kimberly L. |
author_sort | Bloomer, Conor |
collection | PubMed |
description | OBJECTIVES: To study the effects of advancements in upper-limb prosthesis technology on the user through biomechanical analyses at the joint level to quantitatively examine movement differences of individuals using an advanced upper-limb device, the DEKA Arm, and a conventional device, a body-powered Hosmer hook. DESIGN: Clinical measurement. SETTING: Laboratories at the United States Food and Drug Administration. PARTICIPANTS: Convenience sample of participants (N=14) with no upper limb disability or impairment. INTERVENTIONS: All participants were trained on either an upper limb body-powered (n=6) or DEKA Arm (n=8) bypass device. MAIN OUTCOME MEASURES: Participants completed the Jebsen-Taylor Hand Function Test (JHFT) and targeted Box and Blocks Test within a motion capture framework. Task completion times and joint angle trajectories for each degree of freedom of the right elbow, right shoulder, and torso were collected and analyzed for range of motion, mean angle, maximum angle, and angle path length during each task. RESULTS: Significant differences between devices were observed across metrics in at least one task for each degree of freedom. Completion times were significantly higher for DEKA users (eg, 30.51±19.29s vs 9.30±1.44s) for JHFT–simulated feeding. Some kinematic measures, such as angle path length, were significantly lower in DEKA users, with the greatest difference in the right elbow flexion path length during JHFT–Page Turning (0.29±0.14 units vs 0.11±0.04 units). CONCLUSIONS: Results from this work elucidate the effect of the device on the user’s movement approach and performance, as well as emphasizing the importance of capturing movement quality into the assessment of function for advanced prosthetic technology to fully understand and evaluate potential benefits. |
format | Online Article Text |
id | pubmed-7853360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78533602021-02-03 Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics Bloomer, Conor Kontson, Kimberly L. Arch Rehabil Res Clin Transl Original Research OBJECTIVES: To study the effects of advancements in upper-limb prosthesis technology on the user through biomechanical analyses at the joint level to quantitatively examine movement differences of individuals using an advanced upper-limb device, the DEKA Arm, and a conventional device, a body-powered Hosmer hook. DESIGN: Clinical measurement. SETTING: Laboratories at the United States Food and Drug Administration. PARTICIPANTS: Convenience sample of participants (N=14) with no upper limb disability or impairment. INTERVENTIONS: All participants were trained on either an upper limb body-powered (n=6) or DEKA Arm (n=8) bypass device. MAIN OUTCOME MEASURES: Participants completed the Jebsen-Taylor Hand Function Test (JHFT) and targeted Box and Blocks Test within a motion capture framework. Task completion times and joint angle trajectories for each degree of freedom of the right elbow, right shoulder, and torso were collected and analyzed for range of motion, mean angle, maximum angle, and angle path length during each task. RESULTS: Significant differences between devices were observed across metrics in at least one task for each degree of freedom. Completion times were significantly higher for DEKA users (eg, 30.51±19.29s vs 9.30±1.44s) for JHFT–simulated feeding. Some kinematic measures, such as angle path length, were significantly lower in DEKA users, with the greatest difference in the right elbow flexion path length during JHFT–Page Turning (0.29±0.14 units vs 0.11±0.04 units). CONCLUSIONS: Results from this work elucidate the effect of the device on the user’s movement approach and performance, as well as emphasizing the importance of capturing movement quality into the assessment of function for advanced prosthetic technology to fully understand and evaluate potential benefits. Elsevier 2020-04-25 /pmc/articles/PMC7853360/ /pubmed/33543084 http://dx.doi.org/10.1016/j.arrct.2020.100057 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Bloomer, Conor Kontson, Kimberly L. Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title | Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title_full | Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title_fullStr | Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title_full_unstemmed | Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title_short | Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics |
title_sort | comparison of deka arm and body-powered upper limb prosthesis joint kinematics |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853360/ https://www.ncbi.nlm.nih.gov/pubmed/33543084 http://dx.doi.org/10.1016/j.arrct.2020.100057 |
work_keys_str_mv | AT bloomerconor comparisonofdekaarmandbodypoweredupperlimbprosthesisjointkinematics AT kontsonkimberlyl comparisonofdekaarmandbodypoweredupperlimbprosthesisjointkinematics |