Cargando…

Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling

Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Monika, Wüthrich, Florian, Federspiel, Andrea, Wiest, Roland, Egloff, Niklaus, Reichenbach, Stephan, Exadaktylos, Aristomenis, Jüni, Peter, Curatolo, Michele, Walther, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853499/
https://www.ncbi.nlm.nih.gov/pubmed/33529254
http://dx.doi.org/10.1371/journal.pone.0235879
_version_ 1783645973706178560
author Müller, Monika
Wüthrich, Florian
Federspiel, Andrea
Wiest, Roland
Egloff, Niklaus
Reichenbach, Stephan
Exadaktylos, Aristomenis
Jüni, Peter
Curatolo, Michele
Walther, Sebastian
author_facet Müller, Monika
Wüthrich, Florian
Federspiel, Andrea
Wiest, Roland
Egloff, Niklaus
Reichenbach, Stephan
Exadaktylos, Aristomenis
Jüni, Peter
Curatolo, Michele
Walther, Sebastian
author_sort Müller, Monika
collection PubMed
description Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on acute pain processing using experimentally-evoked pain paradigms. Yet, these studies do not allow conclusions about chronic, stimulus-independent pain. Resting-state cerebral blood flow (rsCBF) acquired by arterial spin labelling (ASL) may be a more accurate marker for chronic pain. The objective was to integrate four different functional and structural neuroimaging markers to evaluate the neural correlate of chronic, stimulus-independent pain using a resting-state paradigm. In line with the pathophysiological concept of enhanced central pain processing we hypothesized that rsCBF is increased in fibromyalgia in areas involved in processing of acute pain. We performed an age matched case-control study of 32 female fibromyalgia patients and 32 pain-free controls and calculated group differences in rsCBF, resting state functional connectivity, grey matter volume and cortical thickness using whole-brain and region of interest analyses. We adjusted all analyses for depression and anxiety. As centrally acting drugs are likely to interfere with neuroimaging markers, we performed a subgroup analysis limited to patients not taking such drugs. We found no differences between cases and controls in rsCBF of the thalamus, the basal ganglia, the insula, the somatosensory cortex, the prefrontal cortex, the anterior cingulum and supplementary motor area as brain areas previously identified to be involved in acute processing in fibromyalgia. The results remained robust across all neuroimaging markers and when limiting the study population to patients not taking centrally acting drugs and matched controls. In conclusion, we found no evidence for functional or structural alterations in brain areas involved in acute pain processing in fibromyalgia that could reflect neural correlates of chronic stimulus-independent pain.
format Online
Article
Text
id pubmed-7853499
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78534992021-02-09 Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling Müller, Monika Wüthrich, Florian Federspiel, Andrea Wiest, Roland Egloff, Niklaus Reichenbach, Stephan Exadaktylos, Aristomenis Jüni, Peter Curatolo, Michele Walther, Sebastian PLoS One Research Article Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on acute pain processing using experimentally-evoked pain paradigms. Yet, these studies do not allow conclusions about chronic, stimulus-independent pain. Resting-state cerebral blood flow (rsCBF) acquired by arterial spin labelling (ASL) may be a more accurate marker for chronic pain. The objective was to integrate four different functional and structural neuroimaging markers to evaluate the neural correlate of chronic, stimulus-independent pain using a resting-state paradigm. In line with the pathophysiological concept of enhanced central pain processing we hypothesized that rsCBF is increased in fibromyalgia in areas involved in processing of acute pain. We performed an age matched case-control study of 32 female fibromyalgia patients and 32 pain-free controls and calculated group differences in rsCBF, resting state functional connectivity, grey matter volume and cortical thickness using whole-brain and region of interest analyses. We adjusted all analyses for depression and anxiety. As centrally acting drugs are likely to interfere with neuroimaging markers, we performed a subgroup analysis limited to patients not taking such drugs. We found no differences between cases and controls in rsCBF of the thalamus, the basal ganglia, the insula, the somatosensory cortex, the prefrontal cortex, the anterior cingulum and supplementary motor area as brain areas previously identified to be involved in acute processing in fibromyalgia. The results remained robust across all neuroimaging markers and when limiting the study population to patients not taking centrally acting drugs and matched controls. In conclusion, we found no evidence for functional or structural alterations in brain areas involved in acute pain processing in fibromyalgia that could reflect neural correlates of chronic stimulus-independent pain. Public Library of Science 2021-02-02 /pmc/articles/PMC7853499/ /pubmed/33529254 http://dx.doi.org/10.1371/journal.pone.0235879 Text en © 2021 Müller et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Müller, Monika
Wüthrich, Florian
Federspiel, Andrea
Wiest, Roland
Egloff, Niklaus
Reichenbach, Stephan
Exadaktylos, Aristomenis
Jüni, Peter
Curatolo, Michele
Walther, Sebastian
Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title_full Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title_fullStr Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title_full_unstemmed Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title_short Altered central pain processing in fibromyalgia—A multimodal neuroimaging case-control study using arterial spin labelling
title_sort altered central pain processing in fibromyalgia—a multimodal neuroimaging case-control study using arterial spin labelling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853499/
https://www.ncbi.nlm.nih.gov/pubmed/33529254
http://dx.doi.org/10.1371/journal.pone.0235879
work_keys_str_mv AT mullermonika alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT wuthrichflorian alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT federspielandrea alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT wiestroland alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT egloffniklaus alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT reichenbachstephan alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT exadaktylosaristomenis alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT junipeter alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT curatolomichele alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling
AT walthersebastian alteredcentralpainprocessinginfibromyalgiaamultimodalneuroimagingcasecontrolstudyusingarterialspinlabelling