Cargando…
A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea
Traditional clinical prediction models focus on parameters of the individual patient. For infectious diseases, sources external to the patient, including characteristics of prior patients and seasonal factors, may improve predictive performance. We describe the development of a predictive model that...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853717/ https://www.ncbi.nlm.nih.gov/pubmed/33527894 http://dx.doi.org/10.7554/eLife.63009 |
_version_ | 1783646018368176128 |
---|---|
author | Brintz, Ben J Haaland, Benjamin Howard, Joel Chao, Dennis L Proctor, Joshua L Khan, Ashraful I Ahmed, Sharia M Keegan, Lindsay T Greene, Tom Keita, Adama Mamby Kotloff, Karen L Platts-Mills, James A Nelson, Eric J Levine, Adam C Pavia, Andrew T Leung, Daniel T |
author_facet | Brintz, Ben J Haaland, Benjamin Howard, Joel Chao, Dennis L Proctor, Joshua L Khan, Ashraful I Ahmed, Sharia M Keegan, Lindsay T Greene, Tom Keita, Adama Mamby Kotloff, Karen L Platts-Mills, James A Nelson, Eric J Levine, Adam C Pavia, Andrew T Leung, Daniel T |
author_sort | Brintz, Ben J |
collection | PubMed |
description | Traditional clinical prediction models focus on parameters of the individual patient. For infectious diseases, sources external to the patient, including characteristics of prior patients and seasonal factors, may improve predictive performance. We describe the development of a predictive model that integrates multiple sources of data in a principled statistical framework using a post-test odds formulation. Our method enables electronic real-time updating and flexibility, such that components can be included or excluded according to data availability. We apply this method to the prediction of etiology of pediatric diarrhea, where 'pre-test’ epidemiologic data may be highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are often over-prescribed. We demonstrate that our integrative method outperforms traditional prediction in accurately identifying cases with a viral etiology, and show that its clinical application, especially when used with an additional diagnostic test, could result in a 61% reduction in inappropriately prescribed antibiotics. |
format | Online Article Text |
id | pubmed-7853717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-78537172021-02-04 A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea Brintz, Ben J Haaland, Benjamin Howard, Joel Chao, Dennis L Proctor, Joshua L Khan, Ashraful I Ahmed, Sharia M Keegan, Lindsay T Greene, Tom Keita, Adama Mamby Kotloff, Karen L Platts-Mills, James A Nelson, Eric J Levine, Adam C Pavia, Andrew T Leung, Daniel T eLife Epidemiology and Global Health Traditional clinical prediction models focus on parameters of the individual patient. For infectious diseases, sources external to the patient, including characteristics of prior patients and seasonal factors, may improve predictive performance. We describe the development of a predictive model that integrates multiple sources of data in a principled statistical framework using a post-test odds formulation. Our method enables electronic real-time updating and flexibility, such that components can be included or excluded according to data availability. We apply this method to the prediction of etiology of pediatric diarrhea, where 'pre-test’ epidemiologic data may be highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are often over-prescribed. We demonstrate that our integrative method outperforms traditional prediction in accurately identifying cases with a viral etiology, and show that its clinical application, especially when used with an additional diagnostic test, could result in a 61% reduction in inappropriately prescribed antibiotics. eLife Sciences Publications, Ltd 2021-02-02 /pmc/articles/PMC7853717/ /pubmed/33527894 http://dx.doi.org/10.7554/eLife.63009 Text en © 2021, Brintz et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Epidemiology and Global Health Brintz, Ben J Haaland, Benjamin Howard, Joel Chao, Dennis L Proctor, Joshua L Khan, Ashraful I Ahmed, Sharia M Keegan, Lindsay T Greene, Tom Keita, Adama Mamby Kotloff, Karen L Platts-Mills, James A Nelson, Eric J Levine, Adam C Pavia, Andrew T Leung, Daniel T A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title | A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title_full | A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title_fullStr | A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title_full_unstemmed | A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title_short | A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
title_sort | modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853717/ https://www.ncbi.nlm.nih.gov/pubmed/33527894 http://dx.doi.org/10.7554/eLife.63009 |
work_keys_str_mv | AT brintzbenj amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT haalandbenjamin amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT howardjoel amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT chaodennisl amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT proctorjoshual amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT khanashrafuli amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT ahmedshariam amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT keeganlindsayt amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT greenetom amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT keitaadamamamby amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT kotloffkarenl amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT plattsmillsjamesa amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT nelsonericj amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT levineadamc amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT paviaandrewt amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT leungdanielt amodularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT brintzbenj modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT haalandbenjamin modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT howardjoel modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT chaodennisl modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT proctorjoshual modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT khanashrafuli modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT ahmedshariam modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT keeganlindsayt modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT greenetom modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT keitaadamamamby modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT kotloffkarenl modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT plattsmillsjamesa modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT nelsonericj modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT levineadamc modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT paviaandrewt modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea AT leungdanielt modularapproachtointegratingmultipledatasourcesintorealtimeclinicalpredictionforpediatricdiarrhea |