Cargando…
A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study
BACKGROUND: An increasing number of people are visiting hospital websites to seek better services and treatments compared to the past. It is therefore important for hospitals to develop websites to meet the needs of their patients. However, few studies have investigated whether and how the current h...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854043/ https://www.ncbi.nlm.nih.gov/pubmed/33464211 http://dx.doi.org/10.2196/14794 |
_version_ | 1783646056204992512 |
---|---|
author | Suzuki, Ryusuke Suzuki, Teppei Tsuji, Shintaro Fujiwara, Kensuke Yamashina, Hiroko Endoh, Akira Ogasawara, Katsuhiko |
author_facet | Suzuki, Ryusuke Suzuki, Teppei Tsuji, Shintaro Fujiwara, Kensuke Yamashina, Hiroko Endoh, Akira Ogasawara, Katsuhiko |
author_sort | Suzuki, Ryusuke |
collection | PubMed |
description | BACKGROUND: An increasing number of people are visiting hospital websites to seek better services and treatments compared to the past. It is therefore important for hospitals to develop websites to meet the needs of their patients. However, few studies have investigated whether and how the current hospital websites meet the patient’s needs. Above all, in radiation departments, it may be difficult for patients to obtain the desired information regarding modality and diagnosis because such information is subdivided when described on a website. OBJECTIVE: The purpose of this study is to suggest a hospital website search behavior model by analyzing the browsing behavior model using a Bayesian network from the perspective of one-to-one marketing. METHODS: First, we followed the website access log of Hokkaido University Hospital, which was collected from September 1, 2016, to August 31, 2017, and analyzed the access log using Google Analytics. Second, we specified the access records related to radiology from visitor browsing pages and keywords. Third, using these resources, we structured 3 Bayesian network models based on specific patient needs: radiotherapy, nuclear medicine examination, and radiological diagnosis. Analyzing each model, this study considered why some visitors could not reach their desired page and improvements to meet the needs of visitors seeking radiology-related information. RESULTS: The radiotherapy model showed that 74% (67/90) of the target visitors could reach their requested page, but only 2% (2/90) could reach the Center page where inspection information, one of their requested pages, is posted. By analyzing the behavior of the visitors, we clarified that connecting with the radiotherapy and radiological diagnosis pages is useful for increasing the proportion of patients reaching their requested page. CONCLUSIONS: We proposed solutions for patient web-browsing accessibility based on a Bayesian network. Further analysis is necessary to verify the accuracy of the proposed model in comparison to other models. It is expected that information provided on hospital websites will be improved using this method. |
format | Online Article Text |
id | pubmed-7854043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-78540432021-02-05 A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study Suzuki, Ryusuke Suzuki, Teppei Tsuji, Shintaro Fujiwara, Kensuke Yamashina, Hiroko Endoh, Akira Ogasawara, Katsuhiko J Med Internet Res Original Paper BACKGROUND: An increasing number of people are visiting hospital websites to seek better services and treatments compared to the past. It is therefore important for hospitals to develop websites to meet the needs of their patients. However, few studies have investigated whether and how the current hospital websites meet the patient’s needs. Above all, in radiation departments, it may be difficult for patients to obtain the desired information regarding modality and diagnosis because such information is subdivided when described on a website. OBJECTIVE: The purpose of this study is to suggest a hospital website search behavior model by analyzing the browsing behavior model using a Bayesian network from the perspective of one-to-one marketing. METHODS: First, we followed the website access log of Hokkaido University Hospital, which was collected from September 1, 2016, to August 31, 2017, and analyzed the access log using Google Analytics. Second, we specified the access records related to radiology from visitor browsing pages and keywords. Third, using these resources, we structured 3 Bayesian network models based on specific patient needs: radiotherapy, nuclear medicine examination, and radiological diagnosis. Analyzing each model, this study considered why some visitors could not reach their desired page and improvements to meet the needs of visitors seeking radiology-related information. RESULTS: The radiotherapy model showed that 74% (67/90) of the target visitors could reach their requested page, but only 2% (2/90) could reach the Center page where inspection information, one of their requested pages, is posted. By analyzing the behavior of the visitors, we clarified that connecting with the radiotherapy and radiological diagnosis pages is useful for increasing the proportion of patients reaching their requested page. CONCLUSIONS: We proposed solutions for patient web-browsing accessibility based on a Bayesian network. Further analysis is necessary to verify the accuracy of the proposed model in comparison to other models. It is expected that information provided on hospital websites will be improved using this method. JMIR Publications 2021-01-19 /pmc/articles/PMC7854043/ /pubmed/33464211 http://dx.doi.org/10.2196/14794 Text en ©Ryusuke Suzuki, Teppei Suzuki, Shintaro Tsuji, Kensuke Fujiwara, Hiroko Yamashina, Akira Endoh, Katsuhiko Ogasawara. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.01.2021. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Suzuki, Ryusuke Suzuki, Teppei Tsuji, Shintaro Fujiwara, Kensuke Yamashina, Hiroko Endoh, Akira Ogasawara, Katsuhiko A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title | A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title_full | A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title_fullStr | A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title_full_unstemmed | A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title_short | A Bayesian Network–Based Browsing Model for Patients Seeking Radiology-Related Information on Hospital Websites: Development and Usability Study |
title_sort | bayesian network–based browsing model for patients seeking radiology-related information on hospital websites: development and usability study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854043/ https://www.ncbi.nlm.nih.gov/pubmed/33464211 http://dx.doi.org/10.2196/14794 |
work_keys_str_mv | AT suzukiryusuke abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT suzukiteppei abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT tsujishintaro abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT fujiwarakensuke abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT yamashinahiroko abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT endohakira abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT ogasawarakatsuhiko abayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT suzukiryusuke bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT suzukiteppei bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT tsujishintaro bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT fujiwarakensuke bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT yamashinahiroko bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT endohakira bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy AT ogasawarakatsuhiko bayesiannetworkbasedbrowsingmodelforpatientsseekingradiologyrelatedinformationonhospitalwebsitesdevelopmentandusabilitystudy |