Cargando…
Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019
Morphological changes in the brain over the lifespan have been successfully described by using structural magnetic resonance imaging (MRI) in conjunction with machine learning (ML) algorithms. International challenges and scientific initiatives to share open access imaging datasets also contributed...
Autores principales: | Lombardi, Angela, Monaco, Alfonso, Donvito, Giacinto, Amoroso, Nicola, Bellotti, Roberto, Tangaro, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854554/ https://www.ncbi.nlm.nih.gov/pubmed/33551880 http://dx.doi.org/10.3389/fpsyt.2020.619629 |
Ejemplares similares
-
Explainable Deep Learning for Personalized Age Prediction With Brain Morphology
por: Lombardi, Angela, et al.
Publicado: (2021) -
Extensive Evaluation of Morphological Statistical Harmonization for Brain Age Prediction
por: Lombardi, Angela, et al.
Publicado: (2020) -
Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019
por: Da Costa, Pedro F., et al.
Publicado: (2020) -
Editorial: Predicting Chronological Age From Structural Neuroimaging: The Predictive Analytics Competition 2019
por: Fisch, Lukas, et al.
Publicado: (2021) -
Potential energy of complex networks: a quantum mechanical perspective
por: Amoroso, Nicola, et al.
Publicado: (2020)