Cargando…

Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

Ficus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Gang, Zhang, Xingtan, Herre, Edward Allen, McKey, Doyle, Machado, Carlos A., Yu, Wen-Bin, Cannon, Charles H., Arnold, Michael L., Pereira, Rodrigo A. S., Ming, Ray, Liu, Yi-Fei, Wang, Yibin, Ma, Dongna, Chen, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854680/
https://www.ncbi.nlm.nih.gov/pubmed/33531484
http://dx.doi.org/10.1038/s41467-021-20957-3
Descripción
Sumario:Ficus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades of Ficus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughout Ficus evolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.