Cargando…
Understanding learner behaviour in online courses with Bayesian modelling and time series characterisation
The intrinsic temporality of learning demands the adoption of methodologies capable of exploiting time-series information. In this study we leverage the sequence data framework and show how data-driven analysis of temporal sequences of task completion in online courses can be used to characterise pe...
Autores principales: | Peach, Robert L., Greenbury, Sam F., Johnston, Iain G., Yaliraki, Sophia N., Lefevre, David J., Barahona, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854683/ https://www.ncbi.nlm.nih.gov/pubmed/33531544 http://dx.doi.org/10.1038/s41598-021-81709-3 |
Ejemplares similares
-
Data-driven unsupervised clustering of online learner behaviour
por: Peach, Robert L., et al.
Publicado: (2019) -
Toward Precision Healthcare: Context and Mathematical Challenges
por: Colijn, Caroline, et al.
Publicado: (2017) -
Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase
por: Hodges, Maxwell, et al.
Publicado: (2018) -
Allosteric Hotspots in the Main Protease of SARS-CoV-2
por: Strömich, Léonie, et al.
Publicado: (2022) -
Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit
por: Schaub, Michael T., et al.
Publicado: (2012)