Cargando…
Tracking Major Sources of Water Contamination Using Machine Learning
Current microbial source tracking techniques that rely on grab samples analyzed by individual endpoint assays are inadequate to explain microbial sources across space and time. Modeling and predicting host sources of microbial contamination could add a useful tool for watershed management. In this s...
Autores principales: | Wu, Jianyong, Song, Conghe, Dubinsky, Eric A., Stewart, Jill R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854693/ https://www.ncbi.nlm.nih.gov/pubmed/33552026 http://dx.doi.org/10.3389/fmicb.2020.616692 |
Ejemplares similares
-
Accounting for Bacterial Overlap Between Raw Water Communities and Contaminating Sources Improves the Accuracy of Signature-Based Microbial Source Tracking
por: Hägglund, Moa, et al.
Publicado: (2018) -
Microbial source tracking identifies sources of contamination for a river flowing into the Yellow Sea
por: Ma, Jie, et al.
Publicado: (2023) -
Humans and Hoofed Livestock Are the Main Sources of Fecal Contamination of Rivers Used for Crop Irrigation: A Microbial Source Tracking Approach
por: Díaz-Gavidia, Constanza, et al.
Publicado: (2022) -
A Machine Learning-Based Algorithm for Water Network Contamination Source Localization
por: Grbčić, Luka, et al.
Publicado: (2020) -
Machine-Learning Classification of a Number of Contaminant Sources in an Urban Water Network
por: Lučin, Ivana, et al.
Publicado: (2021)