Cargando…
Publisher Correction: miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
Autores principales: | Meher, Prabina Kumar, Satpathy, Subhrajit, Rao, Atmakuri Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854715/ https://www.ncbi.nlm.nih.gov/pubmed/33531547 http://dx.doi.org/10.1038/s41598-021-81881-6 |
Ejemplares similares
-
miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
por: Meher, Prabina Kumar, et al.
Publicado: (2020) -
RNALocate: a resource for RNA subcellular localizations
por: Zhang, Ting, et al.
Publicado: (2017) -
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features
por: Meher, Prabina Kumar, et al.
Publicado: (2022) -
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
por: Meher, Prabina Kumar, et al.
Publicado: (2017) -
RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation
por: Cui, Tianyu, et al.
Publicado: (2021)