Cargando…
Classification of T-cell activation via autofluorescence lifetime imaging
The function of a T cell depends on its subtype and activation state. Here, we show that the imaging of autofluorescence-lifetime signals from quiescent and activated T cells can be used to classify the cells. T cells isolated from human peripheral blood and activated in culture via a tetrameric ant...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854821/ https://www.ncbi.nlm.nih.gov/pubmed/32719514 http://dx.doi.org/10.1038/s41551-020-0592-z |
Sumario: | The function of a T cell depends on its subtype and activation state. Here, we show that the imaging of autofluorescence-lifetime signals from quiescent and activated T cells can be used to classify the cells. T cells isolated from human peripheral blood and activated in culture via a tetrameric antibody against the surface ligands CD2, CD3 and CD28 showed specific activation-state-dependent patterns of autofluorescence lifetime. Logistic-regression models and random-forest models classified T cells according to activation state with 97–99% accuracy, and according to activation state (quiescent or activated) and subtype (CD3(+) CD8(+) or CD3(+) CD4(+)) with 97% accuracy. Autofluorescence-lifetime imaging could be used to non-destructively determine T-cell function. |
---|