Cargando…
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
Emotion recognition plays an important part in human-computer interaction (HCI). Currently, the main challenge in electroencephalogram (EEG)-based emotion recognition is the non-stationarity of EEG signals, which causes performance of the trained model decreasing over time. In this paper, we propose...
Autores principales: | Bao, Guangcheng, Zhuang, Ning, Tong, Li, Yan, Bin, Shu, Jun, Wang, Linyuan, Zeng, Ying, Shen, Zhichong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854906/ https://www.ncbi.nlm.nih.gov/pubmed/33551775 http://dx.doi.org/10.3389/fnhum.2020.605246 |
Ejemplares similares
-
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2022) -
P3-MSDA: Multi-Source Domain Adaptation Network for Dynamic Visual Target Detection
por: Song, Xiyu, et al.
Publicado: (2021) -
High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network
por: Yang, Kai, et al.
Publicado: (2020) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023)