Cargando…
Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery
Positron emission tomography (PET) radioligands are highly enabling tracers which facilitate in vivo characterization of central nervous system (CNS) drug candidates, neurodegenerative diseases, and numerous oncology targets(1). While both tritium and carbon-11 radioisotopologs are generally necessa...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856055/ https://www.ncbi.nlm.nih.gov/pubmed/33238289 http://dx.doi.org/10.1038/s41586-020-3015-0 |
_version_ | 1783646215629438976 |
---|---|
author | Pipal, Robert W. Stout, Kenneth T. Musacchio, Patricia Z. Ren, Sumei Graham, Thomas J. A. Verhoog, Stefan Gantert, Liza Lohith, Talakad G. Schmitz, Alexander Lee, Hsiaoju S. Hesk, David Hostetler, Eric D. Davies, Ian W. MacMillan, David W. C. |
author_facet | Pipal, Robert W. Stout, Kenneth T. Musacchio, Patricia Z. Ren, Sumei Graham, Thomas J. A. Verhoog, Stefan Gantert, Liza Lohith, Talakad G. Schmitz, Alexander Lee, Hsiaoju S. Hesk, David Hostetler, Eric D. Davies, Ian W. MacMillan, David W. C. |
author_sort | Pipal, Robert W. |
collection | PubMed |
description | Positron emission tomography (PET) radioligands are highly enabling tracers which facilitate in vivo characterization of central nervous system (CNS) drug candidates, neurodegenerative diseases, and numerous oncology targets(1). While both tritium and carbon-11 radioisotopologs are generally necessary for in vitro and in vivo characterization of radioligands(2), there exist few radiolabeling protocols for the synthesis of either, inhibiting the development of PET radioligands. Here, we report a broadly useful metallaphotoredox-catalyzed method for late-stage installation of both tritium and carbon-11 via methylation of pharmaceutical precursors bearing aryl and alkyl bromides, simplifying radioligand discovery. To demonstrate the breadth of applicability of this technology, the rapid synthesis of 20 tritiated and 10 carbon-11-labeled complex pharmaceuticals and PET radioligands has been conducted, including a one-step radiosynthesis of clinically utilized [(11)C]UCB-J and [(11)C]PHNO. We have further outlined the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. Last, this protocol has been expanded to the installation of other diverse isotopes, including carbon-14, carbon-13, and deuterium, an enabling feature for the development of pharmaceutical programs. |
format | Online Article Text |
id | pubmed-7856055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-78560552021-05-25 Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery Pipal, Robert W. Stout, Kenneth T. Musacchio, Patricia Z. Ren, Sumei Graham, Thomas J. A. Verhoog, Stefan Gantert, Liza Lohith, Talakad G. Schmitz, Alexander Lee, Hsiaoju S. Hesk, David Hostetler, Eric D. Davies, Ian W. MacMillan, David W. C. Nature Article Positron emission tomography (PET) radioligands are highly enabling tracers which facilitate in vivo characterization of central nervous system (CNS) drug candidates, neurodegenerative diseases, and numerous oncology targets(1). While both tritium and carbon-11 radioisotopologs are generally necessary for in vitro and in vivo characterization of radioligands(2), there exist few radiolabeling protocols for the synthesis of either, inhibiting the development of PET radioligands. Here, we report a broadly useful metallaphotoredox-catalyzed method for late-stage installation of both tritium and carbon-11 via methylation of pharmaceutical precursors bearing aryl and alkyl bromides, simplifying radioligand discovery. To demonstrate the breadth of applicability of this technology, the rapid synthesis of 20 tritiated and 10 carbon-11-labeled complex pharmaceuticals and PET radioligands has been conducted, including a one-step radiosynthesis of clinically utilized [(11)C]UCB-J and [(11)C]PHNO. We have further outlined the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. Last, this protocol has been expanded to the installation of other diverse isotopes, including carbon-14, carbon-13, and deuterium, an enabling feature for the development of pharmaceutical programs. 2020-11-25 2021-01 /pmc/articles/PMC7856055/ /pubmed/33238289 http://dx.doi.org/10.1038/s41586-020-3015-0 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Pipal, Robert W. Stout, Kenneth T. Musacchio, Patricia Z. Ren, Sumei Graham, Thomas J. A. Verhoog, Stefan Gantert, Liza Lohith, Talakad G. Schmitz, Alexander Lee, Hsiaoju S. Hesk, David Hostetler, Eric D. Davies, Ian W. MacMillan, David W. C. Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title | Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title_full | Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title_fullStr | Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title_full_unstemmed | Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title_short | Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery |
title_sort | metallaphotoredox aryl and alkyl radiomethylation for pet ligand discovery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856055/ https://www.ncbi.nlm.nih.gov/pubmed/33238289 http://dx.doi.org/10.1038/s41586-020-3015-0 |
work_keys_str_mv | AT pipalrobertw metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT stoutkennetht metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT musacchiopatriciaz metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT rensumei metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT grahamthomasja metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT verhoogstefan metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT gantertliza metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT lohithtalakadg metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT schmitzalexander metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT leehsiaojus metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT heskdavid metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT hostetlerericd metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT daviesianw metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery AT macmillandavidwc metallaphotoredoxarylandalkylradiomethylationforpetliganddiscovery |