Cargando…
Feasibility of automated planning for whole‐brain radiation therapy using deep learning
PURPOSE: The purpose of this study was to develop automated planning for whole‐brain radiation therapy (WBRT) using a U‐net‐based deep‐learning model for predicting the multileaf collimator (MLC) shape bypassing the contouring processes. METHODS: A dataset of 55 cases, including 40 training sets, fi...
Autores principales: | Yu, Jesang, Goh, Youngmoon, Song, Kye Jin, Kwak, Jungwon, Cho, Byungchul, Kim, Su San, Lee, Sang‐wook, Choi, Eun Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856520/ https://www.ncbi.nlm.nih.gov/pubmed/33340391 http://dx.doi.org/10.1002/acm2.13130 |
Ejemplares similares
-
An additional tilted‐scan‐based CT metal‐artifact‐reduction method for radiation therapy planning
por: Kim, Changhwan, et al.
Publicado: (2018) -
Automated population‐based planning for whole brain radiation therapy
por: Schreibmann, Eduard, et al.
Publicado: (2015) -
Comparing phase‐ and amplitude‐gated volumetric modulated arc therapy for stereotactic body radiation therapy using 3D printed lung phantom
por: Lee, Minsik, et al.
Publicado: (2019) -
Practical approach for pretreatment verification of IMRT with flattening filter‐free (FFF) beams using Varian portal dosimetry
por: Min, Soonki, et al.
Publicado: (2014) -
Clinical implementation of automated treatment planning for whole‐brain radiotherapy
por: Han, Eun Young, et al.
Publicado: (2021)