Cargando…
Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion
Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enh...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856552/ https://www.ncbi.nlm.nih.gov/pubmed/33535042 http://dx.doi.org/10.1016/j.celrep.2021.108703 |
_version_ | 1783646271632834560 |
---|---|
author | Hu, Ming Cebola, Inês Carrat, Gaelle Jiang, Shuying Nawaz, Sameena Khamis, Amna Canouil, Mickaël Froguel, Philippe Schulte, Anke Solimena, Michele Ibberson, Mark Marchetti, Piero Cardenas-Diaz, Fabian L. Gadue, Paul J. Hastoy, Benoit Alemeida-Souza, Leonardo McMahon, Harvey Rutter, Guy A. |
author_facet | Hu, Ming Cebola, Inês Carrat, Gaelle Jiang, Shuying Nawaz, Sameena Khamis, Amna Canouil, Mickaël Froguel, Philippe Schulte, Anke Solimena, Michele Ibberson, Mark Marchetti, Piero Cardenas-Diaz, Fabian L. Gadue, Paul J. Hastoy, Benoit Alemeida-Souza, Leonardo McMahon, Harvey Rutter, Guy A. |
author_sort | Hu, Ming |
collection | PubMed |
description | Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enhancer possessing strong transcriptional activity. Analysis of human islet 3D chromatin interaction maps identifies the FCHSD2 gene as an additional target of the enhancer cluster. CRISPR-Cas9-mediated deletion of the variant region, or of the associated enhancer, from human pancreas-derived EndoC-βH1 cells impairs glucose-stimulated insulin secretion. Expression of both STARD10 and FCHSD2 is reduced in cells harboring CRISPR deletions, and lower expression of STARD10 and FCHSD2 is associated, the latter nominally, with the possession of risk variant alleles in human islets. Finally, CRISPR-Cas9-mediated loss of STARD10 or FCHSD2, but not ARAP1, impairs regulated insulin secretion. Thus, multiple genes at the STARD10 locus influence β cell function. |
format | Online Article Text |
id | pubmed-7856552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78565522021-02-05 Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion Hu, Ming Cebola, Inês Carrat, Gaelle Jiang, Shuying Nawaz, Sameena Khamis, Amna Canouil, Mickaël Froguel, Philippe Schulte, Anke Solimena, Michele Ibberson, Mark Marchetti, Piero Cardenas-Diaz, Fabian L. Gadue, Paul J. Hastoy, Benoit Alemeida-Souza, Leonardo McMahon, Harvey Rutter, Guy A. Cell Rep Article Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enhancer possessing strong transcriptional activity. Analysis of human islet 3D chromatin interaction maps identifies the FCHSD2 gene as an additional target of the enhancer cluster. CRISPR-Cas9-mediated deletion of the variant region, or of the associated enhancer, from human pancreas-derived EndoC-βH1 cells impairs glucose-stimulated insulin secretion. Expression of both STARD10 and FCHSD2 is reduced in cells harboring CRISPR deletions, and lower expression of STARD10 and FCHSD2 is associated, the latter nominally, with the possession of risk variant alleles in human islets. Finally, CRISPR-Cas9-mediated loss of STARD10 or FCHSD2, but not ARAP1, impairs regulated insulin secretion. Thus, multiple genes at the STARD10 locus influence β cell function. Cell Press 2021-02-02 /pmc/articles/PMC7856552/ /pubmed/33535042 http://dx.doi.org/10.1016/j.celrep.2021.108703 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Ming Cebola, Inês Carrat, Gaelle Jiang, Shuying Nawaz, Sameena Khamis, Amna Canouil, Mickaël Froguel, Philippe Schulte, Anke Solimena, Michele Ibberson, Mark Marchetti, Piero Cardenas-Diaz, Fabian L. Gadue, Paul J. Hastoy, Benoit Alemeida-Souza, Leonardo McMahon, Harvey Rutter, Guy A. Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title | Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title_full | Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title_fullStr | Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title_full_unstemmed | Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title_short | Chromatin 3D interaction analysis of the STARD10 locus unveils FCHSD2 as a regulator of insulin secretion |
title_sort | chromatin 3d interaction analysis of the stard10 locus unveils fchsd2 as a regulator of insulin secretion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856552/ https://www.ncbi.nlm.nih.gov/pubmed/33535042 http://dx.doi.org/10.1016/j.celrep.2021.108703 |
work_keys_str_mv | AT huming chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT cebolaines chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT carratgaelle chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT jiangshuying chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT nawazsameena chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT khamisamna chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT canouilmickael chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT froguelphilippe chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT schulteanke chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT solimenamichele chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT ibbersonmark chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT marchettipiero chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT cardenasdiazfabianl chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT gaduepaulj chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT hastoybenoit chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT alemeidasouzaleonardo chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT mcmahonharvey chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion AT rutterguya chromatin3dinteractionanalysisofthestard10locusunveilsfchsd2asaregulatorofinsulinsecretion |