Cargando…
A new approach to model the counts of earthquakes: INARPQX(1) process
This paper introduces a first-order integer-valued autoregressive process with a new innovation distribution, shortly INARPQX(1) process. A new innovation distribution is obtained by mixing Poisson distribution with quasi-xgamma distribution. The statistical properties and estimation procedure of a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856626/ https://www.ncbi.nlm.nih.gov/pubmed/33554048 http://dx.doi.org/10.1007/s42452-020-04109-8 |
Sumario: | This paper introduces a first-order integer-valued autoregressive process with a new innovation distribution, shortly INARPQX(1) process. A new innovation distribution is obtained by mixing Poisson distribution with quasi-xgamma distribution. The statistical properties and estimation procedure of a new distribution are studied in detail. The parameter estimation of INARPQX(1) process is discussed with two estimation methods: conditional maximum likelihood and Yule-Walker. The proposed INARPQX(1) process is applied to time series of the monthly counts of earthquakes. The empirical results show that INARPQX(1) process is an important process to model over-dispersed time series of counts and can be used to predict the number of earthquakes with a magnitude greater than four. |
---|