Cargando…
Comparing machine and deep learning‐based algorithms for prediction of clinical improvement in psychosis with functional magnetic resonance imaging
Previous work using logistic regression suggests that cognitive control‐related frontoparietal activation in early psychosis can predict symptomatic improvement after 1 year of coordinated specialty care with 66% accuracy. Here, we evaluated the ability of six machine learning (ML) algorithms and de...
Autores principales: | Smucny, Jason, Davidson, Ian, Carter, Cameron S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856652/ https://www.ncbi.nlm.nih.gov/pubmed/33185307 http://dx.doi.org/10.1002/hbm.25286 |
Ejemplares similares
-
Data augmentation with Mixup: Enhancing performance of a functional neuroimaging-based prognostic deep learning classifier in recent onset psychosis
por: Smucny, Jason, et al.
Publicado: (2022) -
Deep Learning in Neuroimaging: Overcoming Challenges With Emerging Approaches
por: Smucny, Jason, et al.
Publicado: (2022) -
Magnetic resonance spectroscopic evidence of increased choline in the dorsolateral prefrontal and visual cortices in recent onset schizophrenia
por: Smucny, Jason, et al.
Publicado: (2022) -
O5.4. THALAMIC CONNECTIVITY IN EARLY PSYCHOSIS DURING TASK AND AT REST
por: Berge, Daniel, et al.
Publicado: (2020) -
Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and
Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance
Spectroscopy Studies
por: Smucny, Jason, et al.
Publicado: (2021)