Cargando…
Robustness of magnetic resonance radiomic features to pixel size resampling and interpolation in patients with cervical cancer
BACKGROUND: Radiomics is a promising field in oncology imaging. However, the implementation of radiomics clinically has been limited because its robustness remains unclear. Previous CT and PET studies suggested that radiomic features were sensitive to variations in pixel size and slice thickness of...
Autores principales: | Park, Shin-Hyung, Lim, Hyejin, Bae, Bong Kyung, Hahm, Myong Hun, Chong, Gun Oh, Jeong, Shin Young, Kim, Jae-Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856733/ https://www.ncbi.nlm.nih.gov/pubmed/33531073 http://dx.doi.org/10.1186/s40644-021-00388-5 |
Ejemplares similares
-
Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis
por: Park, Shin-Hyung, et al.
Publicado: (2020) -
Predicting Tumor Budding Status in Cervical Cancer Using MRI Radiomics: Linking Imaging Biomarkers to Histologic Characteristics
por: Chong, Gun Oh, et al.
Publicado: (2021) -
Assessing radiomic feature robustness to interpolation in (18)F-FDG PET imaging
por: Whybra, Philip, et al.
Publicado: (2019) -
A Robust Kalman Framework with Resampling and Optimal Smoothing
por: Kautz, Thomas, et al.
Publicado: (2015) -
The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI
por: Moummad, Ilyass, et al.
Publicado: (2021)