Cargando…
Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856858/ https://www.ncbi.nlm.nih.gov/pubmed/33533980 http://dx.doi.org/10.1007/s00063-021-00791-7 |
_version_ | 1783646327991697408 |
---|---|
author | Schuppert, A. Theisen, S. Fränkel, P. Weber-Carstens, S. Karagiannidis, C. |
author_facet | Schuppert, A. Theisen, S. Fränkel, P. Weber-Carstens, S. Karagiannidis, C. |
author_sort | Schuppert, A. |
collection | PubMed |
description | BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon. METHODOLOGY: We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from “sentinel clinics”. By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures. RESULTS: The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events. DISCUSSION: Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios. |
format | Online Article Text |
id | pubmed-7856858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-78568582021-02-03 Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 Schuppert, A. Theisen, S. Fränkel, P. Weber-Carstens, S. Karagiannidis, C. Med Klin Intensivmed Notfmed Originalien BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon. METHODOLOGY: We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from “sentinel clinics”. By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures. RESULTS: The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events. DISCUSSION: Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios. Springer Medizin 2021-02-03 2022 /pmc/articles/PMC7856858/ /pubmed/33533980 http://dx.doi.org/10.1007/s00063-021-00791-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Originalien Schuppert, A. Theisen, S. Fränkel, P. Weber-Carstens, S. Karagiannidis, C. Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title | Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title_full | Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title_fullStr | Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title_full_unstemmed | Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title_short | Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 |
title_sort | bundesweites belastungsmodell für intensivstationen durch covid-19 |
topic | Originalien |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856858/ https://www.ncbi.nlm.nih.gov/pubmed/33533980 http://dx.doi.org/10.1007/s00063-021-00791-7 |
work_keys_str_mv | AT schupperta bundesweitesbelastungsmodellfurintensivstationendurchcovid19 AT theisens bundesweitesbelastungsmodellfurintensivstationendurchcovid19 AT frankelp bundesweitesbelastungsmodellfurintensivstationendurchcovid19 AT webercarstenss bundesweitesbelastungsmodellfurintensivstationendurchcovid19 AT karagiannidisc bundesweitesbelastungsmodellfurintensivstationendurchcovid19 |