Cargando…

Bundesweites Belastungsmodell für Intensivstationen durch COVID-19

BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupa...

Descripción completa

Detalles Bibliográficos
Autores principales: Schuppert, A., Theisen, S., Fränkel, P., Weber-Carstens, S., Karagiannidis, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Medizin 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856858/
https://www.ncbi.nlm.nih.gov/pubmed/33533980
http://dx.doi.org/10.1007/s00063-021-00791-7
_version_ 1783646327991697408
author Schuppert, A.
Theisen, S.
Fränkel, P.
Weber-Carstens, S.
Karagiannidis, C.
author_facet Schuppert, A.
Theisen, S.
Fränkel, P.
Weber-Carstens, S.
Karagiannidis, C.
author_sort Schuppert, A.
collection PubMed
description BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon. METHODOLOGY: We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from “sentinel clinics”. By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures. RESULTS: The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events. DISCUSSION: Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios.
format Online
Article
Text
id pubmed-7856858
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Medizin
record_format MEDLINE/PubMed
spelling pubmed-78568582021-02-03 Bundesweites Belastungsmodell für Intensivstationen durch COVID-19 Schuppert, A. Theisen, S. Fränkel, P. Weber-Carstens, S. Karagiannidis, C. Med Klin Intensivmed Notfmed Originalien BACKGROUND: Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon. METHODOLOGY: We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from “sentinel clinics”. By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures. RESULTS: The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events. DISCUSSION: Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios. Springer Medizin 2021-02-03 2022 /pmc/articles/PMC7856858/ /pubmed/33533980 http://dx.doi.org/10.1007/s00063-021-00791-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Originalien
Schuppert, A.
Theisen, S.
Fränkel, P.
Weber-Carstens, S.
Karagiannidis, C.
Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title_full Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title_fullStr Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title_full_unstemmed Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title_short Bundesweites Belastungsmodell für Intensivstationen durch COVID-19
title_sort bundesweites belastungsmodell für intensivstationen durch covid-19
topic Originalien
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856858/
https://www.ncbi.nlm.nih.gov/pubmed/33533980
http://dx.doi.org/10.1007/s00063-021-00791-7
work_keys_str_mv AT schupperta bundesweitesbelastungsmodellfurintensivstationendurchcovid19
AT theisens bundesweitesbelastungsmodellfurintensivstationendurchcovid19
AT frankelp bundesweitesbelastungsmodellfurintensivstationendurchcovid19
AT webercarstenss bundesweitesbelastungsmodellfurintensivstationendurchcovid19
AT karagiannidisc bundesweitesbelastungsmodellfurintensivstationendurchcovid19