Cargando…

Soft Tunable Lenses Based on Zipping Electroactive Polymer Actuators

Compact and entirely soft optics with tunable and adaptive properties drive the development of life‐like soft robotic systems. Yet, existing approaches are either slow, require rigid components, or use high operating voltages of several kilovolts. Here, soft focus‐tunable lenses are introduced, whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartmann, Florian, Penkner, Lukas, Danninger, Doris, Arnold, Nikita, Kaltenbrunner, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856880/
https://www.ncbi.nlm.nih.gov/pubmed/33552870
http://dx.doi.org/10.1002/advs.202003104
Descripción
Sumario:Compact and entirely soft optics with tunable and adaptive properties drive the development of life‐like soft robotic systems. Yet, existing approaches are either slow, require rigid components, or use high operating voltages of several kilovolts. Here, soft focus‐tunable lenses are introduced, which operate at practical voltages, cover a high range of adjustable focal lengths, and feature response times in the milliseconds range. The nature‐inspired design comprises a liquid‐filled elastomeric lens membrane, which is inflated by zipping electroactive polymers to tune the focal length. An analytic description of the tunable lens supports optimized designs and accurate prediction of the lens characteristics. Focal length changes between 22 and 550 mm (numerical aperture 0.14–0.005) within 260 ms, equal in performance to human eyes, are demonstrated for a lens with 3 mm aperture radius, while applying voltages below 500 V. The presented model, design rules, and fabrication methods address central challenges of soft electrostatic actuators and optical systems, and pave the way toward autonomous bio‐inspired robots and machines.