Cargando…

Surface Doping of Organic Single‐Crystal Semiconductors to Produce Strain‐Sensitive Conductive Nanosheets

A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it al...

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Shun, Hakamatani, Ryohei, Yaegashi, Keita, Yamashita, Yu, Nozawa, Han, Sasaki, Mari, Kumagai, Shohei, Okamoto, Toshihiro, Tang, Cindy G., Chua, Lay‐Lay, Ho, Peter K. H., Takeya, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856890/
https://www.ncbi.nlm.nih.gov/pubmed/33552854
http://dx.doi.org/10.1002/advs.202002065
Descripción
Sumario:A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox‐active molecular dopants via a simple one‐shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 10(13) cm(−2) at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.