Cargando…

Engineered Tools to Study Intercellular Communication

All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Benjamin A., Westerhof, Trisha M., Sabin, Kaitlyn, Merajver, Sofia D., Aguilar, Carlos A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856891/
https://www.ncbi.nlm.nih.gov/pubmed/33552865
http://dx.doi.org/10.1002/advs.202002825
Descripción
Sumario:All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in “omic” layers that contribute to cell state and function. Recent advances in microengineering and high‐throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high‐throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.