Cargando…

Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes

Given the inherent features of open tunnel‐like pyrochlore crystal frameworks and pentavalent antimony species, polyantimonic acid (PAA) is an appealing conversion/alloying‐type anode material with fast solid‐phase ionic diffusion and multielectron reactions for lithium‐ion batteries. Yet, enhancing...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Boya, Wei, Yunhong, Fang, Haoyu, Qiu, Xiaoling, Zhang, Qiaobao, Wu, Hao, Wang, Qian, Zhang, Yun, Ji, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856895/
https://www.ncbi.nlm.nih.gov/pubmed/33552866
http://dx.doi.org/10.1002/advs.202002866
_version_ 1783646334985699328
author Wang, Boya
Wei, Yunhong
Fang, Haoyu
Qiu, Xiaoling
Zhang, Qiaobao
Wu, Hao
Wang, Qian
Zhang, Yun
Ji, Xiaobo
author_facet Wang, Boya
Wei, Yunhong
Fang, Haoyu
Qiu, Xiaoling
Zhang, Qiaobao
Wu, Hao
Wang, Qian
Zhang, Yun
Ji, Xiaobo
author_sort Wang, Boya
collection PubMed
description Given the inherent features of open tunnel‐like pyrochlore crystal frameworks and pentavalent antimony species, polyantimonic acid (PAA) is an appealing conversion/alloying‐type anode material with fast solid‐phase ionic diffusion and multielectron reactions for lithium‐ion batteries. Yet, enhancing the electronic conductivity and structural stability are two key issues in exploiting high‐rate and long‐life PAA‐based electrodes. Herein, these challenges are addressed by engineering a novel multidimensional integrated architecture, which consists of 0D Mn‐substituted PAA nanocrystals embedded in 1D tubular graphene scrolls that are co‐assembled with 2D N‐doped graphene sheets. The integrated advantages of each subunit synergistically establish a robust and conductive 3D electrode framework with omnidirectional electron/ion transport network. Computational simulations combined with experiments reveal that the partial‐substitution of H(3)O(+) by Mn(2+) into the tunnel sites of PAA can regulate its electronic structure to narrow the bandgap with increased intrinsic electronic conductivity and reduce the Li(+) diffusion barrier. All above merits enable improved reaction kinetics, adaptive volume expansion, and relieved dissolution of active Mn(2+)/Sb(5+) species in the electrode materials, thus exhibiting ultrahigh rate capacity (238 mAh g(−1) at 30.0 A g(−1)), superfast‐charging capability (fully charged with 56% initial capacity for ≈17 s at 80.0 A g(−1)) and durable cycling performance (over 1000 cycles).
format Online
Article
Text
id pubmed-7856895
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78568952021-02-05 Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes Wang, Boya Wei, Yunhong Fang, Haoyu Qiu, Xiaoling Zhang, Qiaobao Wu, Hao Wang, Qian Zhang, Yun Ji, Xiaobo Adv Sci (Weinh) Full Papers Given the inherent features of open tunnel‐like pyrochlore crystal frameworks and pentavalent antimony species, polyantimonic acid (PAA) is an appealing conversion/alloying‐type anode material with fast solid‐phase ionic diffusion and multielectron reactions for lithium‐ion batteries. Yet, enhancing the electronic conductivity and structural stability are two key issues in exploiting high‐rate and long‐life PAA‐based electrodes. Herein, these challenges are addressed by engineering a novel multidimensional integrated architecture, which consists of 0D Mn‐substituted PAA nanocrystals embedded in 1D tubular graphene scrolls that are co‐assembled with 2D N‐doped graphene sheets. The integrated advantages of each subunit synergistically establish a robust and conductive 3D electrode framework with omnidirectional electron/ion transport network. Computational simulations combined with experiments reveal that the partial‐substitution of H(3)O(+) by Mn(2+) into the tunnel sites of PAA can regulate its electronic structure to narrow the bandgap with increased intrinsic electronic conductivity and reduce the Li(+) diffusion barrier. All above merits enable improved reaction kinetics, adaptive volume expansion, and relieved dissolution of active Mn(2+)/Sb(5+) species in the electrode materials, thus exhibiting ultrahigh rate capacity (238 mAh g(−1) at 30.0 A g(−1)), superfast‐charging capability (fully charged with 56% initial capacity for ≈17 s at 80.0 A g(−1)) and durable cycling performance (over 1000 cycles). John Wiley and Sons Inc. 2020-11-25 /pmc/articles/PMC7856895/ /pubmed/33552866 http://dx.doi.org/10.1002/advs.202002866 Text en © 2020 The Authors. Published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Wang, Boya
Wei, Yunhong
Fang, Haoyu
Qiu, Xiaoling
Zhang, Qiaobao
Wu, Hao
Wang, Qian
Zhang, Yun
Ji, Xiaobo
Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title_full Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title_fullStr Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title_full_unstemmed Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title_short Mn‐Substituted Tunnel‐Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfast‐Charging Lithium‐Ion Battery Anodes
title_sort mn‐substituted tunnel‐type polyantimonic acid confined in a multidimensional integrated architecture enabling superfast‐charging lithium‐ion battery anodes
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856895/
https://www.ncbi.nlm.nih.gov/pubmed/33552866
http://dx.doi.org/10.1002/advs.202002866
work_keys_str_mv AT wangboya mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT weiyunhong mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT fanghaoyu mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT qiuxiaoling mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT zhangqiaobao mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT wuhao mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT wangqian mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT zhangyun mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes
AT jixiaobo mnsubstitutedtunneltypepolyantimonicacidconfinedinamultidimensionalintegratedarchitectureenablingsuperfastcharginglithiumionbatteryanodes