Cargando…

Wood‐Inspired Cement with High Strength and Multifunctionality

Taking lessons from nature offers an increasing promise toward improved performance in man‐made materials. Here new cement materials with unidirectionally porous architectures are developed by replicating the designs of natural wood using a simplified ice‐templating technique in light of the retenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Faheng, Du, Yuanbo, Jiao, Da, Zhang, Jian, Zhang, Yuan, Liu, Zengqian, Zhang, Zhefeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856898/
https://www.ncbi.nlm.nih.gov/pubmed/33552847
http://dx.doi.org/10.1002/advs.202000096
Descripción
Sumario:Taking lessons from nature offers an increasing promise toward improved performance in man‐made materials. Here new cement materials with unidirectionally porous architectures are developed by replicating the designs of natural wood using a simplified ice‐templating technique in light of the retention of ice‐templated architectures by utilizing the self‐hardening nature of cement. The wood‐like cement exhibits higher strengths at equal densities than other porous cement‐based materials along with unique multifunctional properties, including effective thermal insulation at the transverse profile, controllable water permeability along the vertical direction, and the easy adjustment to be water repulsive by hydrophobic treatment. The strengths are quantitatively interpreted by discerning the effects of differing types of pores using an equivalent element approach. The simultaneous achievement of high strength and multifunctionality makes the wood‐like cement promising for applications as new building materials, and verifies the effectiveness of wood‐mimetic designs in creating new high‐performance materials. The simple fabrication procedure by omitting the freeze‐drying treatment can also promote a better efficiency of ice‐templating technique for the mass production in engineering and may be extended to other material systems.