Cargando…

Thermodynamics and Dynamics of Supercritical Water Pseudo‐Boiling

Supercritical fluid pseudo‐boiling (PB), recently brought to the attention of the scientific community, is the phenomenon occurring when fluid changes its structure from liquid‐like (LL) to gas‐like (GL) states across the Widom line. This work provides the first quantitative analysis on the thermody...

Descripción completa

Detalles Bibliográficos
Autores principales: Maxim, Florentina, Karalis, Konstantinos, Boillat, Pierre, Banuti, Daniel T., Marquez Damian, Jose Ignacio, Niceno, Bojan, Ludwig, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856905/
https://www.ncbi.nlm.nih.gov/pubmed/33552857
http://dx.doi.org/10.1002/advs.202002312
Descripción
Sumario:Supercritical fluid pseudo‐boiling (PB), recently brought to the attention of the scientific community, is the phenomenon occurring when fluid changes its structure from liquid‐like (LL) to gas‐like (GL) states across the Widom line. This work provides the first quantitative analysis on the thermodynamics and the dynamics of water's PB, since the understanding of this phase transition is mandatory for the successful implementation of technologies using supercritical water (scH(2)O) for environmental, energy, and nanomaterial applications. The study combines computational techniques with in situ neutron imaging measurements. The results demonstrate that, during isobaric heating close to the critical point, while water density drops by a factor of three in the PB transitional region, the system needs >16 times less energy to increase its temperature by 1 K than to change its structure from LL to GL phase. Above the PB‐Widom line, the structure of LL water consists mainly of tetramers and trimers, while below the line mostly dimers and monomers form in the GL phase. At atomic level, the PB dynamics are similar to those of the subcritical water vaporization. This fundamental knowledge has great impact on water science, as it helps to establish the structure–properties relationship of scH(2)O.