Cargando…
Wavefront sensing, novel lower degree/higher degree polynomial decomposition and its recent clinical applications: A review
We are in the midst of a shift towards using novel polynomials to decompose wavefront aberrations in a more ophthalmologically relevant way. Zernike polynomials have useful mathematical properties but fail to provide clinically relevant wavefront interpretation and predictions. We compared the distr...
Autores principales: | Rampat, Radhika, Malet, Jacques, Dumas, Laurent, Gatinel, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856982/ https://www.ncbi.nlm.nih.gov/pubmed/33229642 http://dx.doi.org/10.4103/ijo.IJO_1760_20 |
Ejemplares similares
-
Using Artificial Intelligence and Novel Polynomials to Predict Subjective Refraction
por: Rampat, Radhika, et al.
Publicado: (2020) -
Comparison of Low Degree/High Degree and Zernike Expansions for Evaluating Simulation Outcomes After Customized Aspheric Laser Corrections
por: Gatinel, Damien, et al.
Publicado: (2021) -
Theoretical Impact of Intraocular Lens Design Variations on the Accuracy of IOL Power Calculations
por: Gatinel, Damien, et al.
Publicado: (2023) -
Impact of Single Constant Optimization on the Precision of IOL Power Calculation
por: Gatinel, Damien, et al.
Publicado: (2023) -
Theoretical Relationship Among Effective Lens Position, Predicted Refraction, and Corneal and Intraocular Lens Power in a Pseudophakic Eye Model
por: Gatinel, Damien, et al.
Publicado: (2022)