Cargando…
A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning
How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering from the pandemic around the world. Currently, the chest CT is regarded as a popular and informative imaging tool for COVID-19 diagnosis. However, we observe that there are...
Autores principales: | Li, Zekun, Zhao, Wei, Shi, Feng, Qi, Lei, Xie, Xingzhi, Wei, Ying, Ding, Zhongxiang, Gao, Yang, Wu, Shangjie, Liu, Jun, Shi, Yinghuan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857016/ https://www.ncbi.nlm.nih.gov/pubmed/33588121 http://dx.doi.org/10.1016/j.media.2021.101978 |
Ejemplares similares
-
Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images
por: He, Kelei, et al.
Publicado: (2021) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
Instance-Level Contrastive Learning for Weakly Supervised Object Detection
por: Zhang, Ming, et al.
Publicado: (2022) -
WS-RCNN: Learning to Score Proposals for Weakly Supervised Instance Segmentation
por: Ou, Jia-Rong, et al.
Publicado: (2021)