Cargando…

Coordinated control of adiposity and growth by anti‐anabolic kinase ERK7

Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient‐regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ER...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasygar, Kiran, Deniz, Onur, Liu, Ying, Gullmets, Josef, Hynynen, Riikka, Ruhanen, Hanna, Kokki, Krista, Käkelä, Reijo, Hietakangas, Ville
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857433/
https://www.ncbi.nlm.nih.gov/pubmed/33369866
http://dx.doi.org/10.15252/embr.201949602
Descripción
Sumario:Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient‐regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin‐binding protein PWP1, a growth‐promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli‐similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss‐of‐function animals. In conclusion, ERK7 is an anti‐anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.