Cargando…
Error and anomaly detection for intra-participant time-series data
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘mo...
Autores principales: | Mullineaux, David R., Irwin, Gareth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857460/ http://dx.doi.org/10.1080/23335432.2017.1348913 |
Ejemplares similares
-
Anomaly Detection in COVID-19 Time-Series Data
por: Homayouni, Hajar, et al.
Publicado: (2021) -
Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer
por: Baidya, Ranjai, et al.
Publicado: (2023) -
Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
por: Zhang, Minghu, et al.
Publicado: (2020) -
Anomaly Detection Based on Time Series Data of Hydraulic Accumulator
por: Park, Min-Ho, et al.
Publicado: (2022) -
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015)