Cargando…
OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction
Protein secondary structure prediction is extremely important for determining the spatial structure and function of proteins. In this paper, we apply an optimized convolutional neural network and long short-term memory neural network models to protein secondary structure prediction, which is called...
Autores principales: | Zhao, Yawu, Liu, Yihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857624/ https://www.ncbi.nlm.nih.gov/pubmed/33534819 http://dx.doi.org/10.1371/journal.pone.0245982 |
Ejemplares similares
-
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
por: Yuan, Lu, et al.
Publicado: (2023) -
DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction
por: Guo, Yanbu, et al.
Publicado: (2019) -
Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
por: Ghimire, Sujan, et al.
Publicado: (2021) -
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019) -
Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug–Disease Associations
por: Xuan, Ping, et al.
Publicado: (2019)