Cargando…

A single-nucleotide change underlies the genetic assimilation of a plastic trait

Genetic assimilation—the evolutionary process by which an environmentally induced phenotype is made constitutive—represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation...

Descripción completa

Detalles Bibliográficos
Autores principales: Vigne, Paul, Gimond, Clotilde, Ferrari, Céline, Vielle, Anne, Hallin, Johan, Pino-Querido, Ania, El Mouridi, Sonia, Mignerot, Laure, Frøkjær-Jensen, Christian, Boulin, Thomas, Teotónio, Henrique, Braendle, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857674/
https://www.ncbi.nlm.nih.gov/pubmed/33536214
http://dx.doi.org/10.1126/sciadv.abd9941
Descripción
Sumario:Genetic assimilation—the evolutionary process by which an environmentally induced phenotype is made constitutive—represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation—by either genetic drift or selection—of an ancestrally plastic trait.