Cargando…
Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase
Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857730/ https://www.ncbi.nlm.nih.gov/pubmed/33534698 http://dx.doi.org/10.7554/eLife.60969 |
_version_ | 1783646498489106432 |
---|---|
author | Fukuda, Tomoyuki Sofyantoro, Fajar Tai, Yen Teng Chia, Kim Hou Matsuda, Takato Murase, Takaaki Morozumi, Yuichi Tatebe, Hisashi Kanki, Tomotake Shiozaki, Kazuhiro |
author_facet | Fukuda, Tomoyuki Sofyantoro, Fajar Tai, Yen Teng Chia, Kim Hou Matsuda, Takato Murase, Takaaki Morozumi, Yuichi Tatebe, Hisashi Kanki, Tomotake Shiozaki, Kazuhiro |
author_sort | Fukuda, Tomoyuki |
collection | PubMed |
description | Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al., 2017). Here, we report identification and characterization of GATOR2 in fission yeast. Unexpectedly, the GATOR2 subunit Sea3, an ortholog of mammalian WDR59, is physically and functionally proximal to GATOR1, rather than GATOR2, attenuating TORC1 activity. The fission yeast GATOR complex is dispensable for TORC1 regulation in response to amino acid starvation, which instead activates the Gcn2 pathway to inhibit TORC1 and induce autophagy. On the other hand, nitrogen starvation suppresses TORC1 through the combined actions of the GATOR1-Sea3 complex, the Gcn2 pathway, and the TSC complex, another conserved TORC1 inhibitor. Thus, multiple, parallel signaling pathways implement negative regulation of TORC1 to ensure proper cellular starvation responses. |
format | Online Article Text |
id | pubmed-7857730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-78577302021-02-04 Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase Fukuda, Tomoyuki Sofyantoro, Fajar Tai, Yen Teng Chia, Kim Hou Matsuda, Takato Murase, Takaaki Morozumi, Yuichi Tatebe, Hisashi Kanki, Tomotake Shiozaki, Kazuhiro eLife Cell Biology Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al., 2017). Here, we report identification and characterization of GATOR2 in fission yeast. Unexpectedly, the GATOR2 subunit Sea3, an ortholog of mammalian WDR59, is physically and functionally proximal to GATOR1, rather than GATOR2, attenuating TORC1 activity. The fission yeast GATOR complex is dispensable for TORC1 regulation in response to amino acid starvation, which instead activates the Gcn2 pathway to inhibit TORC1 and induce autophagy. On the other hand, nitrogen starvation suppresses TORC1 through the combined actions of the GATOR1-Sea3 complex, the Gcn2 pathway, and the TSC complex, another conserved TORC1 inhibitor. Thus, multiple, parallel signaling pathways implement negative regulation of TORC1 to ensure proper cellular starvation responses. eLife Sciences Publications, Ltd 2021-02-03 /pmc/articles/PMC7857730/ /pubmed/33534698 http://dx.doi.org/10.7554/eLife.60969 Text en © 2021, Fukuda et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Fukuda, Tomoyuki Sofyantoro, Fajar Tai, Yen Teng Chia, Kim Hou Matsuda, Takato Murase, Takaaki Morozumi, Yuichi Tatebe, Hisashi Kanki, Tomotake Shiozaki, Kazuhiro Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title | Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title_full | Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title_fullStr | Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title_full_unstemmed | Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title_short | Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase |
title_sort | tripartite suppression of fission yeast torc1 signaling by the gator1-sea3 complex, the tsc complex, and gcn2 kinase |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857730/ https://www.ncbi.nlm.nih.gov/pubmed/33534698 http://dx.doi.org/10.7554/eLife.60969 |
work_keys_str_mv | AT fukudatomoyuki tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT sofyantorofajar tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT taiyenteng tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT chiakimhou tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT matsudatakato tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT murasetakaaki tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT morozumiyuichi tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT tatebehisashi tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT kankitomotake tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase AT shiozakikazuhiro tripartitesuppressionoffissionyeasttorc1signalingbythegator1sea3complexthetsccomplexandgcn2kinase |