Cargando…

An Antibiotic-Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and Predisposes to Dysregulated Immune Responses

Antibiotic exposure early in life and other practices impacting the vertical transmission and ordered assembly of a diverse and balanced gut microbiota are associated with a higher risk of immunological and metabolic disorders such as asthma and allergy, autoimmunity, obesity, and susceptibility to...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaozhou, Borbet, Timothy C., Fallegger, Angela, Wipperman, Matthew F., Blaser, Martin J., Müller, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858066/
https://www.ncbi.nlm.nih.gov/pubmed/33531385
http://dx.doi.org/10.1128/mBio.03335-20
Descripción
Sumario:Antibiotic exposure early in life and other practices impacting the vertical transmission and ordered assembly of a diverse and balanced gut microbiota are associated with a higher risk of immunological and metabolic disorders such as asthma and allergy, autoimmunity, obesity, and susceptibility to opportunistic infections. In this study, we used a model of perinatal exposure to the broad-spectrum antibiotic ampicillin to examine how the acquisition of a dysbiotic microbiota affects neonatal immune system development. We found that the resultant dysbiosis imprints in a manner that is irreversible after weaning, leading to specific and selective alteration of the colonic CD4(+) T-cell compartment. In contrast, colonic granulocyte and myeloid lineages and other mucosal T-cell compartments are unaffected. Among colonic CD4(+) T cells, we observed the most pronounced effects on neuropilin-negative, RORγt- and Foxp3-positive regulatory T cells, which are largely absent in antibiotic-exposed mice even as they reach adulthood. Immunomagnetically isolated dendritic cells from antibiotic-exposed mice fail to support the generation of Foxp3(+) regulatory T cells (Tregs) from naive T cells ex vivo. The perinatally acquired dysbiotic microbiota predisposes to dysregulated effector T-cell responses to Citrobacter rodentium or ovalbumin challenge. The transfer of the antibiotic-impacted, but not healthy, fecal microbiota into germfree recipients recapitulates the selective loss of colonic neuropilin-negative, RORγt- and Foxp3-positive Tregs. The combined data indicate that the early-life acquisition of a dysbiotic microbiota has detrimental effects on the diversity and microbial community composition of offspring that persist into adulthood and predisposes to inappropriate T-cell responses that are linked to compromised immune tolerance.