Cargando…

The mixed application of organic and inorganic selenium shows better effects on incubation and progeny parameters

This experiment aims to study the effects of dietary selenium (Se) sources on the production performance, reproductive performance, and maternal effect of breeder laying hens. A total of 2,112 Hyline brown breeder laying hens of 42 wk of age were selected and randomly divided into 3 groups, with 8 r...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhenxin, Kong, Linglian, Zhu, Lixian, Hu, Xiyi, Su, Pengcheng, Song, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858146/
https://www.ncbi.nlm.nih.gov/pubmed/33518072
http://dx.doi.org/10.1016/j.psj.2020.10.037
Descripción
Sumario:This experiment aims to study the effects of dietary selenium (Se) sources on the production performance, reproductive performance, and maternal effect of breeder laying hens. A total of 2,112 Hyline brown breeder laying hens of 42 wk of age were selected and randomly divided into 3 groups, with 8 repeats in each group and 88 chickens per repeat. The sources of dietary Se were sodium selenite (SS, added at 0.3 mg/kg), L-selenomethionine (L-SM, added at 0.2 mg/kg), and combination of SS and L-SM (SS 0.15 mg/kg + L-SM 0.15 mg/kg). The pretest period was 7 d, and the breeding period was 49 d. Compared with 0.3 mg/kg SS, the addition of 0.2 mg/kg L-SM in the diet significantly increased the hatchability (P < 0.05) and the Se content (P < 0.05) in egg yolk and chicken embryo tissues and improved the activity of yolk glutathione peroxidase (GSH-px) effectively (P < 0.05). Treatment with 0.2 mg/kg L-SM also reduced the content of yolk malondialdehyde (P < 0.05) and significantly improved the antioxidant performance of 1-day-old chicks, as manifested by increased activity of antioxidant enzymes (GSH-px, total antioxidant capacity and the ability to inhibit hydroxyl radicals) in serum, pectoral, heart, and liver (P < 0.05). This treatment decreased the malondialdehyde content (P < 0.05) and increased the expression of liver glutathione peroxidase 4 and deiodinase 1 mRNA (P < 0.05). Adding L-SM to the diets of chickens increased the hatchability of breeder eggs as well as the amount of Se deposited and antioxidant enzyme activity in breeder eggs and embryos. Compared with SS, L-SM was more effectively transferred from the mother to the embryo and offspring, showing efficient maternal nutrition. For breeder diets, the combination of organic and inorganic Se (0.15 mg/kg SS + 0.15 mg/kg L-SM) is an effective nutrient supplementation technology program for effectively improving the breeding performance of breeders and the antioxidant performance and health level of offspring chicks.