Cargando…

Marine algal polysaccharides alleviate aflatoxin B1-induced bursa of Fabricius injury by regulating redox and apoptotic signaling pathway in broilers

Aflatoxin B1 (AFB1) causes toxic effect and leads to organ damage in broilers. Marine algal polysaccharides (MAP) of Enteromorpha prolifera exert multiple biological activities, maybe have a potential detoxification effect on AFB1, but the related research in broilers is extremely rare. Therefore, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yan, Balasubramanian, Balamuralikrishnan, Zhao, Zhi-Hui, Liu, Wen-Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858151/
https://www.ncbi.nlm.nih.gov/pubmed/33518138
http://dx.doi.org/10.1016/j.psj.2020.10.050
Descripción
Sumario:Aflatoxin B1 (AFB1) causes toxic effect and leads to organ damage in broilers. Marine algal polysaccharides (MAP) of Enteromorpha prolifera exert multiple biological activities, maybe have a potential detoxification effect on AFB1, but the related research in broilers is extremely rare. Therefore, the purpose of this study was to investigate whether MAPs can alleviate AFB1-induced oxidative damage and apoptosis of bursa of Fabricius in broilers. A total of 216 five-week-old male indigenous yellow-feathered broilers (with average initial body weight 397.35 ± 6.32 g) were randomly allocated to one of three treatments (6 replicates with 12 broilers per replicate), and the trial lasted 4 wk. Experimental groups were followed as basal diet (control group); basal diet mixed with 100 μg/kg AFB1 (AFB1 group, the AFB1 is purified form); basal diet with 100 μg/kg AFB1 + 2,500 mg/kg MAPs (AFB1 + MAPs group). The results showed that the diet with AFB1 significantly decreased the relative weight of bursa of Fabricius (P < 0.05), antioxidant enzymes activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and total antioxidation capacity (T-AOC), while increased malondialdehyde (MDA) content (P < 0.05). Besides, compared with AFB1 group, dietary MAPs improved the relative weight of bursa of Fabricius and activities of antioxidant enzymes (T-SOD, GSH-Px, CAT, GST) with decreased MDA contents (P < 0.05). Moreover, the consumption of AFB1 downregulated the mRNA expression of SOD1, SOD2, GSTA3, CAT1, GPX1, GPx3, GSTT1, Nrf2, HO-1, and p38MAPK (P < 0.05). Dietary MAPs upregulated the mRNA expression of SOD2, GSTA3, CAT1, GPX1, GSTT1, p38MAPK, Nrf2, and HO-1 in comparison with AFB1 group (P < 0.05). The histological analysis confirmed restoration of apoptotic cells of bursa of Fabricius (P < 0.01), which seen with MAPs supplemented broilers. Besides, dietary MAPs down-regulated the mRNA expression of caspase-3 and Bax (P < 0.05), while up-regulated the mRNA expression of Bcl-2 (P < 0.05) compared with AFB1 group. In addition, according to protein expression results, dietary MAPs up-regulated the protein expression level of antioxidant and apoptosis-associated proteins (Nrf2, HO-1, p38MAPK, Bcl-2) (P < 0.01), but down-regulated the protein expression level of caspase-3 and Bax (P < 0.01). In conclusion, dietary MAPs alleviated AFB1-induced bursa of Fabricius injury through regulating Nrf2-mediated redox and mitochondrial apoptotic signaling pathway in broilers.