Cargando…

The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism

It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy me...

Descripción completa

Detalles Bibliográficos
Autores principales: Baldi, Giulia, Soglia, Francesca, Laghi, Luca, Meluzzi,, Adele, Petracci, Massimiliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858186/
https://www.ncbi.nlm.nih.gov/pubmed/33518087
http://dx.doi.org/10.1016/j.psj.2020.11.032
_version_ 1783646603394940928
author Baldi, Giulia
Soglia, Francesca
Laghi, Luca
Meluzzi,, Adele
Petracci, Massimiliano
author_facet Baldi, Giulia
Soglia, Francesca
Laghi, Luca
Meluzzi,, Adele
Petracci, Massimiliano
author_sort Baldi, Giulia
collection PubMed
description It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy metabolism not only in living animal but also during postmortem time. Within this context, this study aimed at establishing whether the concentration of histidine dipeptides can affect muscle postmortem metabolism, examining the glycolytic pathway of 3 chicken muscles (pectoralis major, extensor iliotibialis lateralis, and gastrocnemius internus as glycolytic, intermediate, and oxidative-type, respectively) selected based on their histidine dipeptides content and ultimate pH. Thus, a total of 8 carcasses were obtained from the same flock of broiler chickens (Ross 308 strain, females, 49 d of age, 2.8 kg body weight at slaughter) and selected immediately after evisceration from the line of a commercial processing plant. Meat samples of about 1 cm(3) were excised from bone-in muscles at 15, 60, 120, and 1,440 min postmortem, instantly frozen in liquid nitrogen and used for the determination of pH, glycolytic metabolites, buffering capacity as well as histidine dipeptides content through (1)H-NMR. Overall results suggest that glycolysis in leg muscles ceased already after 2 h postmortem, whereas in breast muscle continued until 24 h, when it exhibited significantly lower pH values (P < 0.05). However, considering its remarkable glycolytic potential, pectoralis major muscle should have exhibited a greater and faster acidification, suggesting that its higher (P < 0.05) histidine dipeptides' content might have prevented a potentially stronger acidification process. Accordingly, breast muscle also showed greater (P < 0.05) buffering ability in the pH range 6.0–7.0. Therefore, anserine and carnosine, being highly positively correlated with muscle's buffering capacity (P < 0.001), might play a role in regulating postmortem pH decline, thus exerting an effect on muscle metabolism during prerigor phase and the quality of the forthcoming meat. Overall results also suggest that total histidine dipeptides content along with muscular ultimate pH represent good indicators for the energy-supplying metabolism of chicken muscles.
format Online
Article
Text
id pubmed-7858186
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-78581862021-02-05 The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism Baldi, Giulia Soglia, Francesca Laghi, Luca Meluzzi,, Adele Petracci, Massimiliano Poult Sci Processing and Products It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy metabolism not only in living animal but also during postmortem time. Within this context, this study aimed at establishing whether the concentration of histidine dipeptides can affect muscle postmortem metabolism, examining the glycolytic pathway of 3 chicken muscles (pectoralis major, extensor iliotibialis lateralis, and gastrocnemius internus as glycolytic, intermediate, and oxidative-type, respectively) selected based on their histidine dipeptides content and ultimate pH. Thus, a total of 8 carcasses were obtained from the same flock of broiler chickens (Ross 308 strain, females, 49 d of age, 2.8 kg body weight at slaughter) and selected immediately after evisceration from the line of a commercial processing plant. Meat samples of about 1 cm(3) were excised from bone-in muscles at 15, 60, 120, and 1,440 min postmortem, instantly frozen in liquid nitrogen and used for the determination of pH, glycolytic metabolites, buffering capacity as well as histidine dipeptides content through (1)H-NMR. Overall results suggest that glycolysis in leg muscles ceased already after 2 h postmortem, whereas in breast muscle continued until 24 h, when it exhibited significantly lower pH values (P < 0.05). However, considering its remarkable glycolytic potential, pectoralis major muscle should have exhibited a greater and faster acidification, suggesting that its higher (P < 0.05) histidine dipeptides' content might have prevented a potentially stronger acidification process. Accordingly, breast muscle also showed greater (P < 0.05) buffering ability in the pH range 6.0–7.0. Therefore, anserine and carnosine, being highly positively correlated with muscle's buffering capacity (P < 0.001), might play a role in regulating postmortem pH decline, thus exerting an effect on muscle metabolism during prerigor phase and the quality of the forthcoming meat. Overall results also suggest that total histidine dipeptides content along with muscular ultimate pH represent good indicators for the energy-supplying metabolism of chicken muscles. Elsevier 2020-11-28 /pmc/articles/PMC7858186/ /pubmed/33518087 http://dx.doi.org/10.1016/j.psj.2020.11.032 Text en © 2020 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Processing and Products
Baldi, Giulia
Soglia, Francesca
Laghi, Luca
Meluzzi,, Adele
Petracci, Massimiliano
The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title_full The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title_fullStr The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title_full_unstemmed The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title_short The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
title_sort role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism
topic Processing and Products
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858186/
https://www.ncbi.nlm.nih.gov/pubmed/33518087
http://dx.doi.org/10.1016/j.psj.2020.11.032
work_keys_str_mv AT baldigiulia theroleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT sogliafrancesca theroleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT laghiluca theroleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT meluzziadele theroleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT petraccimassimiliano theroleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT baldigiulia roleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT sogliafrancesca roleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT laghiluca roleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT meluzziadele roleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism
AT petraccimassimiliano roleofhistidinedipeptidesonpostmortemacidificationofbroilermuscleswithdifferentenergymetabolism