Cargando…
DeepT3_4: A Hybrid Deep Neural Network Model for the Distinction Between Bacterial Type III and IV Secreted Effectors
Gram-negative bacteria can deliver secreted proteins (also known as secreted effectors) directly into host cells through type III secretion system (T3SS), type IV secretion system (T4SS), and type VI secretion system (T6SS) and cause various diseases. These secreted effectors are heavily involved in...
Autores principales: | Yu, Lezheng, Liu, Fengjuan, Li, Yizhou, Luo, Jiesi, Jing, Runyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858263/ https://www.ncbi.nlm.nih.gov/pubmed/33552038 http://dx.doi.org/10.3389/fmicb.2021.605782 |
Ejemplares similares
-
DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework
por: Jing, Runyu, et al.
Publicado: (2021) -
DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
por: Yu, Lezheng, et al.
Publicado: (2020) -
The applications of deep learning algorithms on in silico druggable proteins identification
por: Yu, Lezheng, et al.
Publicado: (2022) -
Evaluation and development of deep neural networks for RNA 5-Methyluridine classifications using autoBioSeqpy
por: Yu, Lezheng, et al.
Publicado: (2023) -
EnsembleDL-ATG: Identifying autophagy proteins by integrating their sequence and evolutionary information using an ensemble deep learning framework
por: Yu, Lezheng, et al.
Publicado: (2023)