Cargando…
An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters
The pelagic spring bloom is essential for Arctic marine food webs, and a crucial driver of carbon transport to the ocean depths. A critical challenge is understanding its timing and magnitude, to predict its changes in coming decades. Spring bloom onset is typically light-limited, beginning when irr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858608/ https://www.ncbi.nlm.nih.gov/pubmed/33536514 http://dx.doi.org/10.1038/s41598-021-82413-y |
Sumario: | The pelagic spring bloom is essential for Arctic marine food webs, and a crucial driver of carbon transport to the ocean depths. A critical challenge is understanding its timing and magnitude, to predict its changes in coming decades. Spring bloom onset is typically light-limited, beginning when irradiance increases or during ice breakup. Here we report an acute 9-day under-ice algal bloom in nutrient-poor, freshwater-influenced water under 1-m thick sea ice. It was dominated by mixotrophic brackish water haptophytes (Chrysochromulina/ Prymnesium) that produced 5.7 g C m(−2) new production. This estimate represents about half the annual pelagic production, occurring below sea ice with a large contribution from the mixotrophic algae bloom. The freshwater-influenced, nutrient-dilute and low light environment combined with mixotrophic community dominance implies that phagotrophy played a critical role in the under-ice bloom. We argue that such blooms dominated by potentially toxic mixotrophic algae might become more common and widespread in the future Arctic Ocean. |
---|