Cargando…
Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation
The purpose of this study was to establish a high-performing radiomics strategy with machine learning from conventional and diffusion MRI to differentiate recurrent glioblastoma (GBM) from radiation necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy. Eighty-six patients with GBM...
Autores principales: | Park, Yae Won, Choi, Dongmin, Park, Ji Eun, Ahn, Sung Soo, Kim, Hwiyoung, Chang, Jong Hee, Kim, Se Hoon, Kim, Ho Sung, Lee, Seung-Koo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858615/ https://www.ncbi.nlm.nih.gov/pubmed/33536499 http://dx.doi.org/10.1038/s41598-021-82467-y |
Ejemplares similares
-
Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results
por: An, Chansik, et al.
Publicado: (2021) -
Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation
por: Bae, Sohi, et al.
Publicado: (2020) -
Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls
por: Park, Yae Won, et al.
Publicado: (2020) -
Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors
por: Park, Yae Won, et al.
Publicado: (2019) -
Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI
por: Park, Ji Eun, et al.
Publicado: (2020)