Cargando…

Current Perspectives on Introgression Breeding in Food Legumes

Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding s...

Descripción completa

Detalles Bibliográficos
Autores principales: Pratap, Aditya, Das, Arpita, Kumar, Shiv, Gupta, Sanjeev
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858677/
https://www.ncbi.nlm.nih.gov/pubmed/33552095
http://dx.doi.org/10.3389/fpls.2020.589189
_version_ 1783646650455031808
author Pratap, Aditya
Das, Arpita
Kumar, Shiv
Gupta, Sanjeev
author_facet Pratap, Aditya
Das, Arpita
Kumar, Shiv
Gupta, Sanjeev
author_sort Pratap, Aditya
collection PubMed
description Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, “specialized population concept” has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars.
format Online
Article
Text
id pubmed-7858677
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78586772021-02-05 Current Perspectives on Introgression Breeding in Food Legumes Pratap, Aditya Das, Arpita Kumar, Shiv Gupta, Sanjeev Front Plant Sci Plant Science Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, “specialized population concept” has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars. Frontiers Media S.A. 2021-01-21 /pmc/articles/PMC7858677/ /pubmed/33552095 http://dx.doi.org/10.3389/fpls.2020.589189 Text en Copyright © 2021 Pratap, Das, Kumar and Gupta. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Pratap, Aditya
Das, Arpita
Kumar, Shiv
Gupta, Sanjeev
Current Perspectives on Introgression Breeding in Food Legumes
title Current Perspectives on Introgression Breeding in Food Legumes
title_full Current Perspectives on Introgression Breeding in Food Legumes
title_fullStr Current Perspectives on Introgression Breeding in Food Legumes
title_full_unstemmed Current Perspectives on Introgression Breeding in Food Legumes
title_short Current Perspectives on Introgression Breeding in Food Legumes
title_sort current perspectives on introgression breeding in food legumes
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858677/
https://www.ncbi.nlm.nih.gov/pubmed/33552095
http://dx.doi.org/10.3389/fpls.2020.589189
work_keys_str_mv AT pratapaditya currentperspectivesonintrogressionbreedinginfoodlegumes
AT dasarpita currentperspectivesonintrogressionbreedinginfoodlegumes
AT kumarshiv currentperspectivesonintrogressionbreedinginfoodlegumes
AT guptasanjeev currentperspectivesonintrogressionbreedinginfoodlegumes