Cargando…

P53 regulation of osteoblast differentiation is mediated through specific microRNAs

In order to understand the role of the p53 tumor suppressor gene in microRNA expression during osteoblast differentiation, we used a screen to identify microRNAs that were altered in a p53-dependent manner. MicroRNAs from MC3T3-E1 preosteoblasts were isolated from day 0 (undifferentiated) and day 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Shivang, Pendleton, Elisha, Couture, Oliver, Broachwalla, Mustafa, Kusper, Teresa, Alt, Lauren A.C., Fay, Michael J., Chandar, Nalini
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859171/
https://www.ncbi.nlm.nih.gov/pubmed/33553686
http://dx.doi.org/10.1016/j.bbrep.2021.100920
Descripción
Sumario:In order to understand the role of the p53 tumor suppressor gene in microRNA expression during osteoblast differentiation, we used a screen to identify microRNAs that were altered in a p53-dependent manner. MicroRNAs from MC3T3-E1 preosteoblasts were isolated from day 0 (undifferentiated) and day 4 (differentiating) and compared to a p53 deficient MC3T3-E1 line treated similarly. Overall, one fourth of all the microRNAs tested showed a reduction of 0.6 fold, and a similar number of them were increased 1.7 fold with differentiation. P53 deficiency caused 40% reduction in expression of microRNAs in differentiating cells, while a small percent (0.03%) showed an increase. Changes in microRNAs were validated using real-time PCR and two microRNAs were selected for further analysis (miR-34b and miR-140). These two microRNAs were increased significantly during differentiation but showed a dramatic reduction in expression in a p53 deficient state. Stable expression of miR-34b and miR-140 in MC3T3-E1 cells resulted in decreases in cell proliferation rates when compared to control cells. There was a 4-fold increase in p53 levels with miR-34b expression and a less dramatic increase with miR-140. Putative target binding sites for bone specific transcription factors, Runx2 and Osterix, were found for miR-34b, while Runx2, beta catenin and type 1 collagen were found to be miR-140 targets. Western blot analyses and functional assays for the transcription factors Runx2, Osterix and Beta-catenin confirmed microRNA specific interactions. These studies provide evidence that p53 mediated regulation of osteoblast differentiation can also occur through specific microRNAs such as miR-34b and miR-140 that also directly target important bone specific genes.