Cargando…
The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism that results from mutations in genes involved in molybdenum cofactor (Moco) biosynthesis. MoCD is characterized clinically by intractable seizures and severe, rapidly progressing neurodegeneration leading to d...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859290/ https://www.ncbi.nlm.nih.gov/pubmed/33552910 http://dx.doi.org/10.1016/j.ymgmr.2021.100716 |
_version_ | 1783646698624516096 |
---|---|
author | Abe, Yu Aihara, Yu Endo, Wakaba Hasegawa, Hiroshi Ichida, Kimiyoshi Uematsu, Mitsugu Kure, Shigeo |
author_facet | Abe, Yu Aihara, Yu Endo, Wakaba Hasegawa, Hiroshi Ichida, Kimiyoshi Uematsu, Mitsugu Kure, Shigeo |
author_sort | Abe, Yu |
collection | PubMed |
description | Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism that results from mutations in genes involved in molybdenum cofactor (Moco) biosynthesis. MoCD is characterized clinically by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. We report on a patient with an unusual late disease onset and mild phenotype, characterized by delayed development and a decline triggered by a febrile illness and a subsequent dystonic movement disorder. Magnetic resonance imaging showed abnormal signal intensities of the bilateral basal ganglia. Blood and urine chemistry tests demonstrated remarkably low serum and urinary uric acid levels. A urine sulfite test was positive. Specific diagnostic workup showed elevated levels of xanthine and hypoxanthine in serum with increased urinary sulfocysteine (SSC) levels. Genetic analysis revealed a homozygous missense mutation at c.1510C > T (p.504R > W) in exon 10 of the MOCS1 in isoform 7 (rs1387934803). At age 1 year 4 months, the patient was placed on a low protein diet to reduce cysteine load and accumulation of sulfite and SCC in tissues. At 3 months after introduction of protein restriction, the urine sulfite test became negative and the urine SCC level was decreased. After starting the protein restriction diet, dystonic movement improved, and the patient's course progressed without regression and seizures. Electroencephalogram findings were remarkably improved. This finding demonstrates that the dietary protein restriction suppresses disease progression in mild cases of MoCD and suggests the effectiveness of dietary therapy in MoCD. |
format | Online Article Text |
id | pubmed-7859290 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78592902021-02-05 The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation Abe, Yu Aihara, Yu Endo, Wakaba Hasegawa, Hiroshi Ichida, Kimiyoshi Uematsu, Mitsugu Kure, Shigeo Mol Genet Metab Rep Research Paper Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism that results from mutations in genes involved in molybdenum cofactor (Moco) biosynthesis. MoCD is characterized clinically by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. We report on a patient with an unusual late disease onset and mild phenotype, characterized by delayed development and a decline triggered by a febrile illness and a subsequent dystonic movement disorder. Magnetic resonance imaging showed abnormal signal intensities of the bilateral basal ganglia. Blood and urine chemistry tests demonstrated remarkably low serum and urinary uric acid levels. A urine sulfite test was positive. Specific diagnostic workup showed elevated levels of xanthine and hypoxanthine in serum with increased urinary sulfocysteine (SSC) levels. Genetic analysis revealed a homozygous missense mutation at c.1510C > T (p.504R > W) in exon 10 of the MOCS1 in isoform 7 (rs1387934803). At age 1 year 4 months, the patient was placed on a low protein diet to reduce cysteine load and accumulation of sulfite and SCC in tissues. At 3 months after introduction of protein restriction, the urine sulfite test became negative and the urine SCC level was decreased. After starting the protein restriction diet, dystonic movement improved, and the patient's course progressed without regression and seizures. Electroencephalogram findings were remarkably improved. This finding demonstrates that the dietary protein restriction suppresses disease progression in mild cases of MoCD and suggests the effectiveness of dietary therapy in MoCD. Elsevier 2021-02-01 /pmc/articles/PMC7859290/ /pubmed/33552910 http://dx.doi.org/10.1016/j.ymgmr.2021.100716 Text en © 2021 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Abe, Yu Aihara, Yu Endo, Wakaba Hasegawa, Hiroshi Ichida, Kimiyoshi Uematsu, Mitsugu Kure, Shigeo The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title | The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title_full | The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title_fullStr | The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title_full_unstemmed | The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title_short | The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation |
title_sort | effect of dietary protein restriction in a case of molybdenum cofactor deficiency with mocs1 mutation |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859290/ https://www.ncbi.nlm.nih.gov/pubmed/33552910 http://dx.doi.org/10.1016/j.ymgmr.2021.100716 |
work_keys_str_mv | AT abeyu theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT aiharayu theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT endowakaba theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT hasegawahiroshi theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT ichidakimiyoshi theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT uematsumitsugu theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT kureshigeo theeffectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT abeyu effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT aiharayu effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT endowakaba effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT hasegawahiroshi effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT ichidakimiyoshi effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT uematsumitsugu effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation AT kureshigeo effectofdietaryproteinrestrictioninacaseofmolybdenumcofactordeficiencywithmocs1mutation |