Cargando…

Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury

After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs....

Descripción completa

Detalles Bibliográficos
Autores principales: Brommer, Benedikt, He, Miao, Zhang, Zicong, Yang, Zhiyun, Page, Jessica C., Su, Junfeng, Zhang, Yu, Zhu, Junjie, Gouy, Emilia, Tang, Jing, Williams, Philip, Dai, Wei, Wang, Qi, Solinsky, Ryan, Chen, Bo, He, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859413/
https://www.ncbi.nlm.nih.gov/pubmed/33536416
http://dx.doi.org/10.1038/s41467-021-20980-4
_version_ 1783646727566262272
author Brommer, Benedikt
He, Miao
Zhang, Zicong
Yang, Zhiyun
Page, Jessica C.
Su, Junfeng
Zhang, Yu
Zhu, Junjie
Gouy, Emilia
Tang, Jing
Williams, Philip
Dai, Wei
Wang, Qi
Solinsky, Ryan
Chen, Bo
He, Zhigang
author_facet Brommer, Benedikt
He, Miao
Zhang, Zicong
Yang, Zhiyun
Page, Jessica C.
Su, Junfeng
Zhang, Yu
Zhu, Junjie
Gouy, Emilia
Tang, Jing
Williams, Philip
Dai, Wei
Wang, Qi
Solinsky, Ryan
Chen, Bo
He, Zhigang
author_sort Brommer, Benedikt
collection PubMed
description After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI.
format Online
Article
Text
id pubmed-7859413
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78594132021-02-11 Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury Brommer, Benedikt He, Miao Zhang, Zicong Yang, Zhiyun Page, Jessica C. Su, Junfeng Zhang, Yu Zhu, Junjie Gouy, Emilia Tang, Jing Williams, Philip Dai, Wei Wang, Qi Solinsky, Ryan Chen, Bo He, Zhigang Nat Commun Article After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI. Nature Publishing Group UK 2021-02-03 /pmc/articles/PMC7859413/ /pubmed/33536416 http://dx.doi.org/10.1038/s41467-021-20980-4 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Brommer, Benedikt
He, Miao
Zhang, Zicong
Yang, Zhiyun
Page, Jessica C.
Su, Junfeng
Zhang, Yu
Zhu, Junjie
Gouy, Emilia
Tang, Jing
Williams, Philip
Dai, Wei
Wang, Qi
Solinsky, Ryan
Chen, Bo
He, Zhigang
Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title_full Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title_fullStr Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title_full_unstemmed Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title_short Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
title_sort improving hindlimb locomotor function by non-invasive aav-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859413/
https://www.ncbi.nlm.nih.gov/pubmed/33536416
http://dx.doi.org/10.1038/s41467-021-20980-4
work_keys_str_mv AT brommerbenedikt improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT hemiao improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT zhangzicong improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT yangzhiyun improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT pagejessicac improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT sujunfeng improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT zhangyu improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT zhujunjie improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT gouyemilia improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT tangjing improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT williamsphilip improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT daiwei improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT wangqi improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT solinskyryan improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT chenbo improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury
AT hezhigang improvinghindlimblocomotorfunctionbynoninvasiveaavmediatedmanipulationsofpropriospinalneuronsinmicewithcompletespinalcordinjury