Cargando…
The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat
The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioural and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859593/ https://www.ncbi.nlm.nih.gov/pubmed/33569174 http://dx.doi.org/10.1093/conphys/coaa114 |
_version_ | 1783646767513862144 |
---|---|
author | Lassoued, Jihene Padín, X A Comeau, Luc A Bejaoui, Nejla Pérez, Fiz F Babarro, Jose M F |
author_facet | Lassoued, Jihene Padín, X A Comeau, Luc A Bejaoui, Nejla Pérez, Fiz F Babarro, Jose M F |
author_sort | Lassoued, Jihene |
collection | PubMed |
description | The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioural and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite:calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioural interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed. |
format | Online Article Text |
id | pubmed-7859593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78595932021-02-09 The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat Lassoued, Jihene Padín, X A Comeau, Luc A Bejaoui, Nejla Pérez, Fiz F Babarro, Jose M F Conserv Physiol Research Article The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioural and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite:calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioural interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed. Oxford University Press 2021-02-04 /pmc/articles/PMC7859593/ /pubmed/33569174 http://dx.doi.org/10.1093/conphys/coaa114 Text en © The Author(s) 2021. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lassoued, Jihene Padín, X A Comeau, Luc A Bejaoui, Nejla Pérez, Fiz F Babarro, Jose M F The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title | The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title_full | The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title_fullStr | The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title_full_unstemmed | The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title_short | The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
title_sort | mediterranean mussel mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859593/ https://www.ncbi.nlm.nih.gov/pubmed/33569174 http://dx.doi.org/10.1093/conphys/coaa114 |
work_keys_str_mv | AT lassouedjihene themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT padinxa themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT comeauluca themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT bejaouinejla themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT perezfizf themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT babarrojosemf themediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT lassouedjihene mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT padinxa mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT comeauluca mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT bejaouinejla mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT perezfizf mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat AT babarrojosemf mediterraneanmusselmytilusgalloprovincialisresponsestoclimatechangescenariosasafunctionoftheoriginalhabitat |