Cargando…
A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis
Background: Sepsis-induced coagulopathy (SIC) denotes an increased mortality rate and poorer prognosis in septic patients. Objectives: Our study aimed to develop and validate machine-learning models to dynamically predict the risk of SIC in critically ill patients with sepsis. Methods: Machine-learn...
Autores principales: | Zhao, Qin-Yu, Liu, Le-Ping, Luo, Jing-Chao, Luo, Yan-Wei, Wang, Huan, Zhang, Yi-Jie, Gui, Rong, Tu, Guo-Wei, Luo, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859637/ https://www.ncbi.nlm.nih.gov/pubmed/33553224 http://dx.doi.org/10.3389/fmed.2020.637434 |
Ejemplares similares
-
Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients With Postoperative Sepsis
por: Ren, Chao, et al.
Publicado: (2022) -
Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury
por: Luo, Xiao-Qin, et al.
Publicado: (2022) -
An Interpretable Early Dynamic Sequential Predictor for Sepsis-Induced Coagulopathy Progression in the Real-World Using Machine Learning
por: Cui, Ruixia, et al.
Publicado: (2021) -
Comparison of the prognostic value of four different critical illness scores in patients with sepsis-induced coagulopathy
por: Wang, Chengli, et al.
Publicado: (2023) -
The Value of Thromboelastography in the Diagnosis of Sepsis-Induced Coagulopathy
por: Luo, Cuizhu, et al.
Publicado: (2020)